These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 9592083)
1. Modulation of neuronal activity by glial cells in the retina. Newman EA; Zahs KR J Neurosci; 1998 Jun; 18(11):4022-8. PubMed ID: 9592083 [TBL] [Abstract][Full Text] [Related]
2. In vivo electrical stimulation of rabbit retina: effect of stimulus duration and electrical field orientation. Shah HA; Montezuma SR; Rizzo JF Exp Eye Res; 2006 Aug; 83(2):247-54. PubMed ID: 16750527 [TBL] [Abstract][Full Text] [Related]
3. Glial cell inhibition of neurons by release of ATP. Newman EA J Neurosci; 2003 Mar; 23(5):1659-66. PubMed ID: 12629170 [TBL] [Abstract][Full Text] [Related]
4. Inner and outer retinal mechanisms engaged by epiretinal stimulation in normal and rd mice. Margalit E; Babai N; Luo J; Thoreson WB Vis Neurosci; 2011 Mar; 28(2):145-54. PubMed ID: 21463541 [TBL] [Abstract][Full Text] [Related]
5. Developmental changes in the neurotransmitter regulation of correlated spontaneous retinal activity. Wong WT; Myhr KL; Miller ED; Wong RO J Neurosci; 2000 Jan; 20(1):351-60. PubMed ID: 10627612 [TBL] [Abstract][Full Text] [Related]
6. Reciprocal regulation between taurine and glutamate response via Ca2+-dependent pathways in retinal third-order neurons. Bulley S; Shen W J Biomed Sci; 2010 Aug; 17 Suppl 1(Suppl 1):S5. PubMed ID: 20804625 [TBL] [Abstract][Full Text] [Related]
7. Potentiation of L-type calcium channels reveals nonsynaptic mechanisms that correlate spontaneous activity in the developing mammalian retina. Singer JH; Mirotznik RR; Feller MB J Neurosci; 2001 Nov; 21(21):8514-22. PubMed ID: 11606640 [TBL] [Abstract][Full Text] [Related]
8. Hyperosmotic activation of transmitter release from presynaptic terminals onto retinal ganglion cells. Yu W; Miller RF J Neurosci Methods; 1995 Nov; 62(1-2):159-68. PubMed ID: 8750098 [TBL] [Abstract][Full Text] [Related]
9. Optical imaging of large-scale correlated wave activity in the developing rat CNS. Momose-Sato Y; Honda Y; Sasaki H; Sato K J Neurophysiol; 2005 Aug; 94(2):1606-22. PubMed ID: 15872071 [TBL] [Abstract][Full Text] [Related]
10. Retinal input induces three firing patterns in neurons of the superficial superior colliculus of neonatal rats. Lo FS; Mize RR J Neurophysiol; 1999 Feb; 81(2):954-8. PubMed ID: 10036294 [TBL] [Abstract][Full Text] [Related]
11. Synaptic pharmacology in the turtle accessory optic system. Kogo N; Fan TX; Ariel M Exp Brain Res; 2002 Dec; 147(4):464-72. PubMed ID: 12444478 [TBL] [Abstract][Full Text] [Related]
12. Involvement of inositol 1,4,5-trisphosphate-regulated stores of intracellular calcium in calcium dysregulation and neuron cell death caused by HIV-1 protein tat. Haughey NJ; Holden CP; Nath A; Geiger JD J Neurochem; 1999 Oct; 73(4):1363-74. PubMed ID: 10501179 [TBL] [Abstract][Full Text] [Related]
13. Calcium increases in retinal glial cells evoked by light-induced neuronal activity. Newman EA J Neurosci; 2005 Jun; 25(23):5502-10. PubMed ID: 15944378 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of neuronal Ca(2+) influx by gabapentin and subsequent reduction of neurotransmitter release from rat neocortical slices. Fink K; Meder W; Dooley DJ; Göthert M Br J Pharmacol; 2000 Jun; 130(4):900-6. PubMed ID: 10864898 [TBL] [Abstract][Full Text] [Related]
15. L-proline activates glutamate and glycine receptors in cultured rat dorsal horn neurons. Henzi V; Reichling DB; Helm SW; MacDermott AB Mol Pharmacol; 1992 Apr; 41(4):793-801. PubMed ID: 1349155 [TBL] [Abstract][Full Text] [Related]