These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 9592102)

  • 1. Induced gamma-band activity during the delay of a visual short-term memory task in humans.
    Tallon-Baudry C; Bertrand O; Peronnet F; Pernier J
    J Neurosci; 1998 Jun; 18(11):4244-54. PubMed ID: 9592102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sustained and transient oscillatory responses in the gamma and beta bands in a visual short-term memory task in humans.
    Tallon-Baudry C; Kreiter A; Bertrand O
    Vis Neurosci; 1999; 16(3):449-59. PubMed ID: 10349966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ketamine Alters Lateral Prefrontal Oscillations in a Rule-Based Working Memory Task.
    Ma L; Skoblenick K; Johnston K; Everling S
    J Neurosci; 2018 Mar; 38(10):2482-2494. PubMed ID: 29437929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequential neural processes of tactile-visual crossmodal working memory.
    Ohara S; Lenz F; Zhou YD
    Neuroscience; 2006 Apr; 139(1):299-309. PubMed ID: 16324794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oscillatory gamma-band (30-70 Hz) activity induced by a visual search task in humans.
    Tallon-Baudry C; Bertrand O; Delpuech C; Permier J
    J Neurosci; 1997 Jan; 17(2):722-34. PubMed ID: 8987794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oscillatory synchrony between human extrastriate areas during visual short-term memory maintenance.
    Tallon-Baudry C; Bertrand O; Fischer C
    J Neurosci; 2001 Oct; 21(20):RC177. PubMed ID: 11588207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the temporal dynamics of the spatial working memory n-back task using steady state visual evoked potentials (SSVEP).
    Ellis KA; Silberstein RB; Nathan PJ
    Neuroimage; 2006 Jul; 31(4):1741-51. PubMed ID: 16580845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency-specific electrocorticographic correlates of working memory delay period fMRI activity.
    Khursheed F; Tandon N; Tertel K; Pieters TA; Disano MA; Ellmore TM
    Neuroimage; 2011 Jun; 56(3):1773-82. PubMed ID: 21356314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural sources of visual working memory maintenance in human parietal and ventral extrastriate visual cortex.
    Becke A; Müller N; Vellage A; Schoenfeld MA; Hopf JM
    Neuroimage; 2015 Apr; 110():78-86. PubMed ID: 25662867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Augmentation of induced visual gamma activity by increased task complexity.
    Posada A; Hugues E; Franck N; Vianin P; Kilner J
    Eur J Neurosci; 2003 Oct; 18(8):2351-6. PubMed ID: 14622197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinction between perceptual and attentional processing in working memory tasks: a study of phase-locked and induced oscillatory brain dynamics.
    Deiber MP; Missonnier P; Bertrand O; Gold G; Fazio-Costa L; Ibañez V; Giannakopoulos P
    J Cogn Neurosci; 2007 Jan; 19(1):158-72. PubMed ID: 17214572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oscillatory synchrony in the monkey temporal lobe correlates with performance in a visual short-term memory task.
    Tallon-Baudry C; Mandon S; Freiwald WA; Kreiter AK
    Cereb Cortex; 2004 Jul; 14(7):713-20. PubMed ID: 15054050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Task- and performance-related modulation of domain-specific auditory short-term memory representations in the gamma-band.
    Kaiser J; Lutzenberger W; Decker C; Wibral M; Rahm B
    Neuroimage; 2009 Jul; 46(4):1127-36. PubMed ID: 19289171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oscillatory correlates of vibrotactile frequency processing in human working memory.
    Spitzer B; Wacker E; Blankenburg F
    J Neurosci; 2010 Mar; 30(12):4496-502. PubMed ID: 20335486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase-Amplitude Coupling and Long-Range Phase Synchronization Reveal Frontotemporal Interactions during Visual Working Memory.
    Daume J; Gruber T; Engel AK; Friese U
    J Neurosci; 2017 Jan; 37(2):313-322. PubMed ID: 28077711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of gamma-band activity during an audiospatial working memory task in humans.
    Lutzenberger W; Ripper B; Busse L; Birbaumer N; Kaiser J
    J Neurosci; 2002 Jul; 22(13):5630-8. PubMed ID: 12097514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gamma Oscillations Underlie the Maintenance of Feature-Specific Information and the Contents of Visual Working Memory.
    Honkanen R; Rouhinen S; Wang SH; Palva JM; Palva S
    Cereb Cortex; 2015 Oct; 25(10):3788-801. PubMed ID: 25405942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulus-induced gamma power predicts the amplitude of the subsequent visual evoked response.
    van Es MWJ; Schoffelen JM
    Neuroimage; 2019 Feb; 186():703-712. PubMed ID: 30468771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain electrical tomography (BET) analysis of induced gamma band responses during a simple object recognition task.
    Gruber T; Trujillo-Barreto NJ; Giabbiconi CM; Valdés-Sosa PA; Müller MM
    Neuroimage; 2006 Feb; 29(3):888-900. PubMed ID: 16242965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual ERP P3 amplitude and latency in standalone and embedded visual processing task.
    Korpela J; Huotilainen M
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():781-4. PubMed ID: 22254427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.