These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 9593196)

  • 1. Protein folding simulation with genetic algorithm and supersecondary structure constraints.
    Cui Y; Chen RS; Wong WH
    Proteins; 1998 May; 31(3):247-57. PubMed ID: 9593196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folding proteins with a simple energy function and extensive conformational searching.
    Yue K; Dill KA
    Protein Sci; 1996 Feb; 5(2):254-61. PubMed ID: 8745403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TOUCHSTONE II: a new approach to ab initio protein structure prediction.
    Zhang Y; Kolinski A; Skolnick J
    Biophys J; 2003 Aug; 85(2):1145-64. PubMed ID: 12885659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo and inverse folding predictions of protein structure and dynamics.
    Godzik A; Kolinski A; Skolnick J
    J Comput Aided Mol Des; 1993 Aug; 7(4):397-438. PubMed ID: 8229093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined multiple sequence reduced protein model approach to predict the tertiary structure of small proteins.
    Ortiz AR; Kolinski A; Skolnick J
    Pac Symp Biocomput; 1998; ():377-88. PubMed ID: 9697197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometric Potentials for Computational Protein Sequence Design.
    Li J; Koehl P
    Methods Mol Biol; 2017; 1529():125-138. PubMed ID: 27914048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulating the folding of small proteins by use of the local minimum energy and the free solvation energy yields native-like structures.
    Brasseur R
    J Mol Graph; 1995 Oct; 13(5):312-22. PubMed ID: 8603060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational simulations of protein folding to engineer amino acid sequences to encourage desired supersecondary structure formation.
    Gerstman BS; Chapagain PP
    Methods Mol Biol; 2013; 932():191-204. PubMed ID: 22987354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hydrophobic spine stabilizes a surface-exposed α-helix according to analysis of the solvent-accessible surface area.
    Liou YF; Huang HL; Ho SY
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):503. PubMed ID: 28155647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulation of protein folding with supersecondary structure constraints.
    Sun ZR; Cui Y; Ling LJ; Guo Q; Chen RS
    J Protein Chem; 1998 Nov; 17(8):765-9. PubMed ID: 9988523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding the main chain of small proteins with the genetic algorithm.
    Dandekar T; Argos P
    J Mol Biol; 1994 Feb; 236(3):844-61. PubMed ID: 8114098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of a novel Hill-climbing genetic algorithm in protein folding simulations.
    Cooper LR; Corne DW; Crabbe MJ
    Comput Biol Chem; 2003 Dec; 27(6):575-80. PubMed ID: 14667785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LINUS: a hierarchic procedure to predict the fold of a protein.
    Srinivasan R; Rose GD
    Proteins; 1995 Jun; 22(2):81-99. PubMed ID: 7567969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heuristic energy landscape paving for protein folding problem in the three-dimensional HP lattice model.
    Liu J; Li G; Yu J; Yao Y
    Comput Biol Chem; 2012 Jun; 38():17-26. PubMed ID: 22551826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MONSSTER: a method for folding globular proteins with a small number of distance restraints.
    Skolnick J; Kolinski A; Ortiz AR
    J Mol Biol; 1997 Jan; 265(2):217-41. PubMed ID: 9020984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying the tertiary fold of small proteins with different topologies from sequence and secondary structure using the genetic algorithm and extended criteria specific for strand regions.
    Dandekar T; Argos P
    J Mol Biol; 1996 Mar; 256(3):645-60. PubMed ID: 8604145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the effects of mutations on the denatured states of proteins.
    Shortle D; Chan HS; Dill KA
    Protein Sci; 1992 Feb; 1(2):201-15. PubMed ID: 1304903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategy for supplementing structure calculations using limited data with hydrophobic distance restraints.
    Alexandrescu AT
    Proteins; 2004 Jul; 56(1):117-29. PubMed ID: 15162492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein tertiary structure prediction using a branch and bound algorithm.
    Eyrich VA; Standley DM; Felts AK; Friesner RA
    Proteins; 1999 Apr; 35(1):41-57. PubMed ID: 10090285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An algorithm for prediction of structural elements in small proteins.
    Kolinski A; Skolnick J; Godzik A
    Pac Symp Biocomput; 1996; ():446-60. PubMed ID: 9390250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.