These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 9593204)

  • 21. Imaging analysis of collagen fiber networks in cusps of porcine aortic valves: effect of their local distribution and alignment on valve functionality.
    Mega M; Marom G; Halevi R; Hamdan A; Bluestein D; Haj-Ali R
    Comput Methods Biomech Biomed Engin; 2016; 19(9):1002-8. PubMed ID: 26406926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contribution of collagen and elastin fibers to the mechanical behavior of an abdominal connective tissue.
    Levillain A; Orhant M; Turquier F; Hoc T
    J Mech Behav Biomed Mater; 2016 Aug; 61():308-317. PubMed ID: 27100469
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pregnancy-induced remodeling of heart valves.
    Pierlot CM; Moeller AD; Lee JM; Wells SM
    Am J Physiol Heart Circ Physiol; 2015 Nov; 309(9):H1565-78. PubMed ID: 26371175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The aortic valve microstructure: effects of transvalvular pressure.
    Sacks MS; Smith DB; Hiester ED
    J Biomed Mater Res; 1998 Jul; 41(1):131-41. PubMed ID: 9641633
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Porcine pulmonary valve decellularization with NaOH-based vs detergent process: preliminary in vitro and in vivo assessments.
    van Steenberghe M; Schubert T; Gerelli S; Bouzin C; Guiot Y; Xhema D; Bollen X; Abdelhamid K; Gianello P
    J Cardiothorac Surg; 2018 Apr; 13(1):34. PubMed ID: 29695259
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential collagen distribution in the mitral valve and its influence on biomechanical behaviour.
    Kunzelman KS; Cochran RP; Murphree SS; Ring WS; Verrier ED; Eberhart RC
    J Heart Valve Dis; 1993 Mar; 2(2):236-44. PubMed ID: 8261162
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrasonic delineation of aortic microstructure: the relative contribution of elastin and collagen to aortic elasticity.
    Marsh JN; Takiuchi S; Lin SJ; Lanza GM; Wickline SA
    J Acoust Soc Am; 2004 May; 115(5 Pt 1):2032-40. PubMed ID: 15139613
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical properties of porcine pulmonary valve leaflets: how do they differ from aortic leaflets?
    Christie GW; Barratt-Boyes BG
    Ann Thorac Surg; 1995 Aug; 60(2 Suppl):S195-9. PubMed ID: 7646158
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Linking collagen fiber architecture to tissue-level biaxial mechanical behaviors of porcine semilunar heart valve cusps.
    Hudson LT; Laurence DW; Lau HM; Mullins BT; Doan DD; Lee CH
    J Mech Behav Biomed Mater; 2022 Jan; 125():104907. PubMed ID: 34736023
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of cellular contraction on aortic valve leaflet flexural stiffness.
    Merryman WD; Huang HY; Schoen FJ; Sacks MS
    J Biomech; 2006; 39(1):88-96. PubMed ID: 16271591
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomechanical Properties of Fiber Bundle and Membrane Mesostructures of the Porcine Aortic Valve.
    Rock CA; Doehring TC
    J Heart Valve Dis; 2016 Jan; 25(1):82-89. PubMed ID: 27989090
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tissue engineering of cardiac valve prostheses II: biomechanical characterization of decellularized porcine aortic heart valves.
    Korossis SA; Booth C; Wilcox HE; Watterson KG; Kearney JN; Fisher J; Ingham E
    J Heart Valve Dis; 2002 Jul; 11(4):463-71. PubMed ID: 12150291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cyclic pressure and angiotensin II influence the biomechanical properties of aortic valves.
    Myles V; Liao J; Warnock JN
    J Biomech Eng; 2014 Jan; 136(1):011011. PubMed ID: 24240552
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Finite element model of mechanically induced collagen fiber synthesis and degradation in the aortic valve.
    Boerboom RA; Driessen NJ; Bouten CV; Huyghe JM; Baaijens FP
    Ann Biomed Eng; 2003 Oct; 31(9):1040-53. PubMed ID: 14582607
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Straightening of curved pattern of collagen fibers under load controls aortic valve shape.
    Hammer PE; Pacak CA; Howe RD; del Nido PJ
    J Biomech; 2014 Jan; 47(2):341-6. PubMed ID: 24315286
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational analyses of mechanically induced collagen fiber remodeling in the aortic heart valve.
    Driessen NJ; Boerboom RA; Huyghe JM; Bouten CV; Baaijens FP
    J Biomech Eng; 2003 Aug; 125(4):549-57. PubMed ID: 12968580
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Elasticity of human aortic valve cusps.
    Wright JE; Ng YL
    Cardiovasc Res; 1974 May; 8(3):384-90. PubMed ID: 4413196
    [No Abstract]   [Full Text] [Related]  

  • 38. The pulmonary valve. Is it mechanically suitable for use as an aortic valve replacement?
    David H; Boughner DR; Vesely I; Gerosa G
    ASAIO J; 1994; 40(2):206-12. PubMed ID: 8003760
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of collagen cross-links in biomechanical behavior of human aortic heart valve leaflets--relevance for tissue engineering.
    Balguid A; Rubbens MP; Mol A; Bank RA; Bogers AJ; van Kats JP; de Mol BA; Baaijens FP; Bouten CV
    Tissue Eng; 2007 Jul; 13(7):1501-11. PubMed ID: 17518750
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A study of extracellular matrix remodeling in aortic heart valves using a novel biaxial stretch bioreactor.
    Lei Y; Masjedi S; Ferdous Z
    J Mech Behav Biomed Mater; 2017 Nov; 75():351-358. PubMed ID: 28783560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.