These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 9593204)
41. Biaxial strain analysis of the porcine aortic valve. Lo D; Vesely I Ann Thorac Surg; 1995 Aug; 60(2 Suppl):S374-8. PubMed ID: 7646191 [TBL] [Abstract][Full Text] [Related]
42. The focal mechanical properties of normal and diseased porcine aortic valve tissue measured by a novel microindentation device. Maleki H; Doyle MG; Chehade M; Liu Q; Simmons CA J Mech Behav Biomed Mater; 2021 Mar; 115():104245. PubMed ID: 33310684 [TBL] [Abstract][Full Text] [Related]
43. An investigation of the glycosaminoglycan contribution to biaxial mechanical behaviours of porcine atrioventricular heart valve leaflets. Ross CJ; Laurence DW; Richardson J; Babu AR; Evans LE; Beyer EG; Childers RC; Wu Y; Towner RA; Fung KM; Mir A; Burkhart HM; Holzapfel GA; Lee CH J R Soc Interface; 2019 Jul; 16(156):20190069. PubMed ID: 31266416 [TBL] [Abstract][Full Text] [Related]
44. On the biomechanical role of glycosaminoglycans in the aortic heart valve leaflet. Eckert CE; Fan R; Mikulis B; Barron M; Carruthers CA; Friebe VM; Vyavahare NR; Sacks MS Acta Biomater; 2013 Jan; 9(1):4653-60. PubMed ID: 23036945 [TBL] [Abstract][Full Text] [Related]
45. Elastic fibers in the aortic valve spongiosa: a fresh perspective on its structure and role in overall tissue function. Tseng H; Grande-Allen KJ Acta Biomater; 2011 May; 7(5):2101-8. PubMed ID: 21255691 [TBL] [Abstract][Full Text] [Related]
46. Stress related collagen ultrastructure in human aortic valves--implications for tissue engineering. Balguid A; Driessen NJ; Mol A; Schmitz JP; Verheyen F; Bouten CV; Baaijens FP J Biomech; 2008 Aug; 41(12):2612-7. PubMed ID: 18701107 [TBL] [Abstract][Full Text] [Related]
47. How Heart Valves Evolve to Adapt to an Extreme-Pressure System: Morphologic and Biomechanical Properties of Giraffe Heart Valves. Amstrup Funder J; Christian Danielsen C; Baandrup U; Martin Bibby B; Carl Andelius T; Toft Brøndum E; Wang T; Michael Hasenkam J J Heart Valve Dis; 2017 Jan; 26(1):63-71. PubMed ID: 28544833 [TBL] [Abstract][Full Text] [Related]
48. The composition and biomechanical properties of human cryopreserved aortas, pulmonary trunks, and aortic and pulmonary cusps. Kubíková T; Kochová P; Brázdil J; Špatenka J; Burkert J; Králíčková M; Tonar Z Ann Anat; 2017 Jul; 212():17-26. PubMed ID: 28434910 [TBL] [Abstract][Full Text] [Related]
49. Ex vivo experimental characterizations for understanding the interrelationship between tissue mechanics and collagen microstructure of porcine mitral valve leaflets. Fitzpatrick DJ; Pham K; Ross CJ; Hudson LT; Laurence DW; Yu Y; Lee CH J Mech Behav Biomed Mater; 2022 Oct; 134():105401. PubMed ID: 35944442 [TBL] [Abstract][Full Text] [Related]
50. Aortic valve mechanics. Part II: a stress analysis of the porcine aortic valve leaflets in diastole. Chong M; Eng M; Missirlis YF Biomater Med Devices Artif Organs; 1978; 6(3):225-44. PubMed ID: 728516 [TBL] [Abstract][Full Text] [Related]
51. In-vivo heterogeneous functional and residual strains in human aortic valve leaflets. Aggarwal A; Pouch AM; Lai E; Lesicko J; Yushkevich PA; Gorman Iii JH; Gorman RC; Sacks MS J Biomech; 2016 Aug; 49(12):2481-90. PubMed ID: 27207385 [TBL] [Abstract][Full Text] [Related]
52. Biaxial Creep Resistance and Structural Remodeling of the Aortic and Mitral Valves in Pregnancy. Pierlot CM; Moeller AD; Lee JM; Wells SM Ann Biomed Eng; 2015 Aug; 43(8):1772-85. PubMed ID: 25564325 [TBL] [Abstract][Full Text] [Related]
53. Use of enzymolysis techniques in studying the mechanical properties of connective tissue components. Missirlis YF J Bioeng; 1977 Aug; 1(3):215-22. PubMed ID: 28317 [TBL] [Abstract][Full Text] [Related]
54. Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp--Part I: Experimental results. Billiar KL; Sacks MS J Biomech Eng; 2000 Feb; 122(1):23-30. PubMed ID: 10790826 [TBL] [Abstract][Full Text] [Related]
55. A functionally graded material model for the transmural stress distribution of the aortic valve leaflet. Rego BV; Sacks MS J Biomech; 2017 Mar; 54():88-95. PubMed ID: 28256242 [TBL] [Abstract][Full Text] [Related]
56. Cyclic loading response of bioprosthetic heart valves: effects of fixation stress state on the collagen fiber architecture. Wells SM; Sellaro T; Sacks MS Biomaterials; 2005 May; 26(15):2611-9. PubMed ID: 15585264 [TBL] [Abstract][Full Text] [Related]
57. Multiscale mechanical integrity of human supraspinatus tendon in shear after elastin depletion. Fang F; Lake SP J Mech Behav Biomed Mater; 2016 Oct; 63():443-455. PubMed ID: 27472764 [TBL] [Abstract][Full Text] [Related]
58. The role of elastin on the mechanical properties of the anterior leaflet in porcine tricuspid valves. Salinas SD; Farra YM; Amini Khoiy K; Houston J; Lee CH; Bellini C; Amini R PLoS One; 2022; 17(5):e0267131. PubMed ID: 35560311 [TBL] [Abstract][Full Text] [Related]
59. St Jude Epic heart valve bioprostheses versus native human and porcine aortic valves - comparison of mechanical properties. Kalejs M; Stradins P; Lacis R; Ozolanta I; Pavars J; Kasyanov V Interact Cardiovasc Thorac Surg; 2009 May; 8(5):553-6. PubMed ID: 19190025 [TBL] [Abstract][Full Text] [Related]
60. Three-dimensional macro-scale assessment of regional and temporal wall shear stress characteristics on aortic valve leaflets. Cao K; Bukač M; Sucosky P Comput Methods Biomech Biomed Engin; 2016; 19(6):603-13. PubMed ID: 26155915 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]