BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 9593294)

  • 1. ClpX and ClpP are essential for the efficient acquisition of genes specifying type IA and IB restriction systems.
    Makovets S; Titheradge AJ; Murray NE
    Mol Microbiol; 1998 Apr; 28(1):25-35. PubMed ID: 9593294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and transcriptional control of the genes encoding the Caulobacter crescentus ClpXP protease.
    Osterås M; Stotz A; Schmid Nuoffer S; Jenal U
    J Bacteriol; 1999 May; 181(10):3039-50. PubMed ID: 10322004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance.
    Gerth U; Krüger E; Derré I; Msadek T; Hecker M
    Mol Microbiol; 1998 May; 28(4):787-802. PubMed ID: 9643546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. clpX encoding an alternative ATP-binding subunit of protease Ti (Clp) can be expressed independently from clpP in Escherichia coli.
    Yoo SJ; Seol JH; Kang MS; Ha DB; Chung CH
    Biochem Biophys Res Commun; 1994 Sep; 203(2):798-804. PubMed ID: 8093059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Target recognition by EcoKI: the recognition domain is robust and restriction-deficiency commonly results from the proteolytic control of enzyme activity.
    O'Neill M; Powell LM; Murray NE
    J Mol Biol; 2001 Mar; 307(3):951-63. PubMed ID: 11273713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP.
    Grimaud R; Kessel M; Beuron F; Steven AC; Maurizi MR
    J Biol Chem; 1998 May; 273(20):12476-81. PubMed ID: 9575205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ClpX, an alternative subunit for the ATP-dependent Clp protease of Escherichia coli. Sequence and in vivo activities.
    Gottesman S; Clark WP; de Crecy-Lagard V; Maurizi MR
    J Biol Chem; 1993 Oct; 268(30):22618-26. PubMed ID: 8226770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The proteolytic control of restriction activity in Escherichia coli K-12.
    Doronina VA; Murray NE
    Mol Microbiol; 2001 Jan; 39(2):416-28. PubMed ID: 11136462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ClpP/ClpX-mediated degradation of the bacteriophage lambda O protein and regulation of lambda phage and lambda plasmid replication.
    Wegrzyn A; Czyz A; Gabig M; Wegrzyn G
    Arch Microbiol; 2000; 174(1-2):89-96. PubMed ID: 10985747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The clpP multigene family for the ATP-dependent Clp protease in the cyanobacterium Synechococcus.
    Schelin J; Lindmark F; Clarke AK
    Microbiology (Reading); 2002 Jul; 148(Pt 7):2255-2265. PubMed ID: 12101312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant mitochondria contain proteolytic and regulatory subunits of the ATP-dependent Clp protease.
    Halperin T; Zheng B; Itzhaki H; Clarke AK; Adam Z
    Plant Mol Biol; 2001 Mar; 45(4):461-8. PubMed ID: 11352464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional domains of the ClpA and ClpX molecular chaperones identified by limited proteolysis and deletion analysis.
    Singh SK; Rozycki J; Ortega J; Ishikawa T; Lo J; Steven AC; Maurizi MR
    J Biol Chem; 2001 Aug; 276(31):29420-9. PubMed ID: 11346657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is modification sufficient to protect a bacterial chromosome from a resident restriction endonuclease?
    Makovets S; Powell LM; Titheradge AJ; Blakely GW; Murray NE
    Mol Microbiol; 2004 Jan; 51(1):135-47. PubMed ID: 14651617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of Escherichia coli starvation sigma factor (sigma s) by ClpXP protease.
    Schweder T; Lee KH; Lomovskaya O; Matin A
    J Bacteriol; 1996 Jan; 178(2):470-6. PubMed ID: 8550468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase.
    Kim YI; Levchenko I; Fraczkowska K; Woodruff RV; Sauer RT; Baker TA
    Nat Struct Biol; 2001 Mar; 8(3):230-3. PubMed ID: 11224567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global role for ClpP-containing proteases in stationary-phase adaptation of Escherichia coli.
    Weichart D; Querfurth N; Dreger M; Hengge-Aronis R
    J Bacteriol; 2003 Jan; 185(1):115-25. PubMed ID: 12486047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interplay of ClpXP with the cell division machinery in Escherichia coli.
    Camberg JL; Hoskins JR; Wickner S
    J Bacteriol; 2011 Apr; 193(8):1911-8. PubMed ID: 21317324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss-of-function mutations in yjbD result in ClpX- and ClpP-independent competence development of Bacillus subtilis.
    Nakano MM; Hajarizadeh F; Zhu Y; Zuber P
    Mol Microbiol; 2001 Oct; 42(2):383-94. PubMed ID: 11703662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations conferring amino acid residue substitutions in the carboxy-terminal domain of RNA polymerase alpha can suppress clpX and clpP with respect to developmentally regulated transcription in Bacillus subtilis.
    Nakano MM; Zhu Y; Liu J; Reyes DY; Yoshikawa H; Zuber P
    Mol Microbiol; 2000 Aug; 37(4):869-84. PubMed ID: 10972808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of different-size transcripts from the clpP-clpX operon of Escherichia coli during carbon deprivation.
    Li C; Tao YP; Simon LD
    J Bacteriol; 2000 Dec; 182(23):6630-7. PubMed ID: 11073905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.