BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

993 related articles for article (PubMed ID: 9593778)

  • 1. Hyperresponsiveness of vitamin D receptor gene expression to 1,25-dihydroxyvitamin D3. A new characteristic of genetic hypercalciuric stone-forming rats.
    Yao J; Kathpalia P; Bushinsky DA; Favus MJ
    J Clin Invest; 1998 May; 101(10):2223-32. PubMed ID: 9593778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism and function of high vitamin D receptor levels in genetic hypercalciuric stone-forming rats.
    Karnauskas AJ; van Leeuwen JP; van den Bemd GJ; Kathpalia PP; DeLuca HF; Bushinsky DA; Favus MJ
    J Bone Miner Res; 2005 Mar; 20(3):447-54. PubMed ID: 15746989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of renal calcium receptor gene expression by 1,25-dihydroxyvitamin D3 in genetic hypercalciuric stone-forming rats.
    Yao JJ; Bai S; Karnauskas AJ; Bushinsky DA; Favus MJ
    J Am Soc Nephrol; 2005 May; 16(5):1300-8. PubMed ID: 15788476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased sensitivity to 1,25(OH)2D3 in bone from genetic hypercalciuric rats.
    Krieger NS; Stathopoulos VM; Bushinsky DA
    Am J Physiol; 1996 Jul; 271(1 Pt 1):C130-5. PubMed ID: 8760038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased intestinal vitamin D receptor in genetic hypercalciuric rats. A cause of intestinal calcium hyperabsorption.
    Li XQ; Tembe V; Horwitz GM; Bushinsky DA; Favus MJ
    J Clin Invest; 1993 Feb; 91(2):661-7. PubMed ID: 8381825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of silencing VDR gene in kidney on renal epithelial calcium transporter proteins and urinary calcium excretion in genetic hypercalciuric stone-forming rats.
    Xi QL; Wang SG; Ye ZQ; Zhu ZW; Li C; Bai J; Yu X; Liu JH
    Urology; 2011 Dec; 78(6):1442.e1-7. PubMed ID: 22137721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of avian calbindin-D28K gene expression in primary chick kidney cells: importance of posttranscriptional mechanisms and calcium ion concentration.
    Enomoto H; Hendy GN; Andrews GK; Clemens TL
    Endocrinology; 1992 Jun; 130(6):3467-74. PubMed ID: 1375904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The roles of calcium and 1,25-dihydroxyvitamin D3 in the regulation of vitamin D receptor expression by rat parathyroid glands.
    Brown AJ; Zhong M; Finch J; Ritter C; Slatopolsky E
    Endocrinology; 1995 Apr; 136(4):1419-25. PubMed ID: 7895652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased vitamin D receptor level enhances 1,25-dihydroxyvitamin D3-mediated gene expression and calcium transport in Caco-2 cells.
    Shao A; Wood RJ; Fleet JC
    J Bone Miner Res; 2001 Apr; 16(4):615-24. PubMed ID: 11315989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation of calbindin-D9K (CaBP9K) gene expression by calcium and 1,25-dihydroxycholecalciferol in fetal rat duodenal organ culture.
    Brehier A; Thomasset M
    Endocrinology; 1990 Aug; 127(2):580-7. PubMed ID: 1695565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variable in vivo regulation of rat vitamin D-dependent genes (osteopontin, Ca,Mg-adenosine triphosphatase, and 25-hydroxyvitamin D3 24-hydroxylase): implications for differing mechanisms of regulation and involvement of multiple factors.
    Matkovits T; Christakos S
    Endocrinology; 1995 Sep; 136(9):3971-82. PubMed ID: 7649106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of rat calbindin-D28 gene expression by 1,25-dihydroxyvitamin D3 and dietary alteration.
    Huang YC; Christakos S
    Mol Endocrinol; 1988 Oct; 2(10):928-35. PubMed ID: 2460748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 1,25(OH)2D3-dependent regulation of calbindin-D28k mRNA requires ongoing protein synthesis in chick duodenal organ culture.
    Meyer J; Galligan MA; Jones G; Komm BS; Haussler CA; Haussler MR
    J Cell Biochem; 1995 Jul; 58(3):315-27. PubMed ID: 7593254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of hormones and development on the expression of the rat 1,25-dihydroxyvitamin D3 receptor gene. Comparison with calbindin gene expression.
    Huang YC; Lee S; Stolz R; Gabrielides C; Pansini-Porta A; Bruns ME; Bruns DE; Miffin TE; Pike JW; Christakos S
    J Biol Chem; 1989 Oct; 264(29):17454-61. PubMed ID: 2551904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the murine renal vitamin D receptor by 1,25-dihydroxyvitamin D3 and calcium.
    Healy KD; Zella JB; Prahl JM; DeLuca HF
    Proc Natl Acad Sci U S A; 2003 Aug; 100(17):9733-7. PubMed ID: 12900504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypercalciuria: lessons from studies of genetic hypercalciuric rats.
    Favus MJ
    J Am Soc Nephrol; 1994 Nov; 5(5 Suppl 1):S54-8. PubMed ID: 7873746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1,25-Dihydroxyvitamin D3 up-regulates the renal vitamin D receptor through indirect gene activation and receptor stabilization.
    Healy KD; Frahm MA; DeLuca HF
    Arch Biochem Biophys; 2005 Jan; 433(2):466-73. PubMed ID: 15581603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parathyroid hormone down-regulates 1,25-dihydroxyvitamin D receptors (VDR) and VDR messenger ribonucleic acid in vitro and blocks homologous up-regulation of VDR in vivo.
    Reinhardt TA; Horst RL
    Endocrinology; 1990 Aug; 127(2):942-8. PubMed ID: 2164926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of glucocorticoids and 1,25-dihydroxyvitamin D3 on the developmental expression of the rat intestinal vitamin D receptor gene.
    Lee S; Szlachetka M; Christakos S
    Endocrinology; 1991 Jul; 129(1):396-401. PubMed ID: 1647304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism for the disparate actions of calcitriol and 22-oxacalcitriol in the intestine.
    Brown AJ; Finch J; Grieff M; Ritter C; Kubodera N; Nishii Y; Slatopolsky E
    Endocrinology; 1993 Sep; 133(3):1158-64. PubMed ID: 8396012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 50.