BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 9593973)

  • 1. Development of laminar distributions of kainate receptors in the somatosensory cortex of mice.
    Jabłońska B; Smith AL; Kossut M; Skangiel-Kramska J
    Brain Res; 1998 Apr; 791(1-2):325-9. PubMed ID: 9593973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage-dependent L-type calcium channels in the development and plasticity of mouse barrel cortex.
    Gałewski S; Skangiel-Kramska J; Pomorski P; Kossut M
    Brain Res Dev Brain Res; 1992 Jun; 67(2):293-300. PubMed ID: 1324806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laminar distribution of MK-801, kainate, AMPA, and muscimol binding sites in cat visual cortex: a developmental study.
    Gordon B; Pardo D; Conant K
    J Comp Neurol; 1996 Feb; 365(3):466-78. PubMed ID: 8822182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laminar development of the mouse barrel cortex: effects of neurotoxins against monoamines.
    Osterheld-Haas MC; Hornung JP
    Exp Brain Res; 1996 Jul; 110(2):183-95. PubMed ID: 8836683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of synaptic zinc in the developing mouse somatosensory barrel cortex.
    Czupryn A; Skangiel-Kramska J
    J Comp Neurol; 1997 Oct; 386(4):652-60. PubMed ID: 9378858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMDA receptors in mouse barrel cortex during normal development and following vibrissectomy.
    Głazewski S; Kossut M; Skangiel-Kramska J
    Int J Dev Neurosci; 1995 Oct; 13(6):505-14. PubMed ID: 8553884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional organization in cortical barrels of normal and vibrissae-damaged mice: a (3H) 2-deoxyglucose study.
    Durham D; Woolsey TA
    J Comp Neurol; 1985 May; 235(1):97-110. PubMed ID: 2985659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postnatal growth of intrinsic connections in mouse barrel cortex.
    Miller B; Blake NM; Erinjeri JP; Reistad CE; Sexton T; Admire P; Woolsey TA
    J Comp Neurol; 2001 Jul; 436(1):17-31. PubMed ID: 11413543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phospholipase C-beta1 expression correlates with neuronal differentiation and synaptic plasticity in rat somatosensory cortex.
    Hannan AJ; Kind PC; Blakemore C
    Neuropharmacology; 1998; 37(4-5):593-605. PubMed ID: 9705000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatio-temporal regulation of the formation of the somatosensory system.
    Kawasaki H
    Dev Growth Differ; 2015 Apr; 57(3):193-9. PubMed ID: 25832476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution 2-deoxyglucose mapping of functional cortical columns in mouse barrel cortex.
    McCasland JS; Woolsey TA
    J Comp Neurol; 1988 Dec; 278(4):555-69. PubMed ID: 3230170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional mapping of low-affinity kainate receptors in mouse brain using [(3)H](2S,4R)-4-methylglutamate autoradiography.
    Bailey A; Kelland EE; Thomas A; Biggs J; Crawford D; Kitchen I; Toms NJ
    Eur J Pharmacol; 2001 Nov; 431(3):305-10. PubMed ID: 11730722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ontogeny of non-NMDA glutamate receptors in rat barrel field cortex: I. Metabotropic receptors.
    Blue ME; Martin LJ; Brennan EM; Johnston MV
    J Comp Neurol; 1997 Sep; 386(1):16-28. PubMed ID: 9303522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Re: Woolsey TA, van der Loos H. 1970. The structural organization of layer IV in the somatosensory region (S I) of mouse cerebral cortex. Brain Res. 17: 205-242.
    Woolsey TA
    Brain Res; 2016 Aug; 1645():22-4. PubMed ID: 27086973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early development of the somatotopic map and barrel patterning in rat somatosensory cortex.
    Schlaggar BL; O'Leary DD
    J Comp Neurol; 1994 Aug; 346(1):80-96. PubMed ID: 7962713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parvalbumin-containing neurons, perineuronal nets and experience-dependent plasticity in murine barrel cortex.
    Nowicka D; Soulsby S; Skangiel-Kramska J; Glazewski S
    Eur J Neurosci; 2009 Dec; 30(11):2053-63. PubMed ID: 20128844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantitative autoradiographic study of [3H]kainate binding sites in the normal human spinal cord, brainstem and motor cortex.
    Shaw PJ; Ince PG
    Brain Res; 1994 Mar; 641(1):39-45. PubMed ID: 8019849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of the barrels and barrel field in the somatosensory cortex of the mouse.
    Rice FL; Van der Loos H
    J Comp Neurol; 1977 Feb; 171(4):545-60. PubMed ID: 833357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subdivisions of human parietal area 5 revealed by quantitative receptor autoradiography: a parietal region between motor, somatosensory, and cingulate cortical areas.
    Scheperjans F; Grefkes C; Palomero-Gallagher N; Schleicher A; Zilles K
    Neuroimage; 2005 Apr; 25(3):975-92. PubMed ID: 15808998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. mGluR5 Exerts Cell-Autonomous Influences on the Functional and Anatomical Development of Layer IV Cortical Neurons in the Mouse Primary Somatosensory Cortex.
    Ballester-Rosado CJ; Sun H; Huang JY; Lu HC
    J Neurosci; 2016 Aug; 36(34):8802-14. PubMed ID: 27559164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.