BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 9593993)

  • 41. In vivo effects of the Ca2+ entry blocker nilvadipine on brain surface microvessels in rats.
    Kawamura S; Yasui N
    Neurol Med Chir (Tokyo); 1994 Oct; 34(10):663-7. PubMed ID: 7529366
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inhibition of endothelin-1 receptors improves impaired nitric oxide synthase-dependent dilation of cerebral arterioles in type-1 diabetic rats.
    Arrick DM; Mayhan WG
    Microcirculation; 2010 Aug; 17(6):439-46. PubMed ID: 20690982
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tetrahydrobiopterin rescues impaired responses of cerebral resistance arterioles during type 1 diabetes.
    Mayhan WG; Arrick DM
    Diab Vasc Dis Res; 2017 Jan; 14(1):33-39. PubMed ID: 27941054
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dilatation of cerebral arterioles in response to lipopolysaccharide in vivo.
    Brian JE; Heistad DD; Faraci FM
    Stroke; 1995 Feb; 26(2):277-80; discussion 281. PubMed ID: 7530388
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Temporal effects of vascular endothelial growth factor and 3,5-cyclic monophosphate on blood-brain barrier solute permeability in vivo.
    Shi L; Zeng M; Fu BM
    J Neurosci Res; 2014 Dec; 92(12):1678-89. PubMed ID: 25066133
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effects of topical and intravenous JM-1232(-) on cerebral pial microvessels of rabbits.
    Ikemoto K; Ishiyama T; Shintani N; Asano N; Sessler DI; Matsukawa T
    BMC Anesthesiol; 2015; 15():37. PubMed ID: 25805961
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of flumazenil during administration of midazolam on pial vessel diameter and regional cerebral blood flow in cats.
    Kumano H; Shimomura T; Furuya H; Yomosa H; Okuda T; Sakaki T; Kuro M
    Acta Anaesthesiol Scand; 1993 Aug; 37(6):567-70. PubMed ID: 8213021
    [TBL] [Abstract][Full Text] [Related]  

  • 48. ACh dilates pial arterioles in endothelial and neuronal NOS knockout mice by NO-dependent mechanisms.
    Meng W; Ma J; Ayata C; Hara H; Huang PL; Fishman MC; Moskowitz MA
    Am J Physiol; 1996 Sep; 271(3 Pt 2):H1145-50. PubMed ID: 8853353
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Miconazole represses CO(2)-induced pial arteriolar dilation only under selected circumstances.
    Pelligrino DA; Santizo RA; Wang Q
    Am J Physiol; 1999 Oct; 277(4):H1484-90. PubMed ID: 10516186
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nitric-oxide-dependent pial arteriolar dilation in the female rat: effects of chronic estrogen depletion and repletion.
    Pelligrino DA; Ye S; Tan F; Santizo RA; Feinstein DL; Wang Q
    Biochem Biophys Res Commun; 2000 Mar; 269(1):165-71. PubMed ID: 10694495
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differential effects of short-term treatment with two AT1 receptor blockers on diameter of pial arterioles in SHR.
    Foulquier S; Dupuis F; Perrin-Sarrado C; Gatè KM; Leroy P; Liminana P; Atkinson J; Capdeville-Atkinson C; Lartaud I
    PLoS One; 2012; 7(9):e42469. PubMed ID: 22957022
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Disruption of blood-brain barrier during acute hypertension in adult and aged rats.
    Mayhan WG
    Am J Physiol; 1990 Jun; 258(6 Pt 2):H1735-8. PubMed ID: 2113773
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inhibition of NAD(P)H oxidase alleviates impaired NOS-dependent responses of pial arterioles in type 1 diabetes mellitus.
    Mayhan WG; Arrick DM; Sharpe GM; Patel KP; Sun H
    Microcirculation; 2006; 13(7):567-75. PubMed ID: 16990215
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inhibition of nitric oxide synthase attenuates blood-brain barrier disruption during experimental meningitis.
    Boje KM
    Brain Res; 1996 May; 720(1-2):75-83. PubMed ID: 8782899
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of nitric oxide scavenging in vascular response to cell-free hemoglobin transfusion.
    Sampei K; Ulatowski JA; Asano Y; Kwansa H; Bucci E; Koehler RC
    Am J Physiol Heart Circ Physiol; 2005 Sep; 289(3):H1191-201. PubMed ID: 15894576
    [TBL] [Abstract][Full Text] [Related]  

  • 56. beta-Adrenoceptor and nNOS-derived NO interactions modulate hypoglycemic pial arteriolar dilation in rats.
    Santizo RA; Koenig HM; Pelligrino DA
    Am J Physiol Heart Circ Physiol; 2001 Feb; 280(2):H562-8. PubMed ID: 11158952
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Impaired pial arteriolar reactivity to hypercapnia during hyperammonemia depends on glutamine synthesis.
    Hirata T; Koehler RC; Kawaguchi T; Brusilow SW; Traystman RJ
    Stroke; 1996 Apr; 27(4):729-36. PubMed ID: 8614939
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of nitric oxide, adenosine, N-methyl-D-aspartate receptors, and neuronal activation in hypoxia-induced pial arteriolar dilation in rats.
    Pelligrino DA; Wang Q; Koenig HM; Albrecht RF
    Brain Res; 1995 Dec; 704(1):61-70. PubMed ID: 8750962
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of inosine on pial arterioles: potentiation of adenosine-induced vasodilation.
    Ngai AC; Monsen MR; Ibayashi S; Ko KR; Winn HR
    Am J Physiol; 1989 Mar; 256(3 Pt 2):H603-6. PubMed ID: 2923227
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Response of pial vessel diameter and regional cerebral blood flow to CO2 during midazolam administration in cats.
    Kumano H; Furuya H; Yomosa H; Nagahata T; Okuda T; Sakaki T
    Acta Anaesthesiol Scand; 1994 Oct; 38(7):729-33. PubMed ID: 7839786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.