These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 9594115)

  • 1. The significance of variations in the angular correction factor in in situ gamma spectrometry.
    MacDonald J; Gibson CJ; Fish PJ; Assinder DJ
    J Radiol Prot; 1998 Mar; 18(1):37-42. PubMed ID: 9594115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. InSiCal - A tool for calculating calibration factors and activity concentrations in in situ gamma spectrometry.
    Mauring A; Vidmar T; Gäfvert T; Drefvelin J; Fazio A
    J Environ Radioact; 2018 Aug; 188():58-66. PubMed ID: 29074271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data quality objectives for surface-soil cleanup operation using in situ gamma spectrometry for concentration measurements.
    Fong SH; Alvarez JL
    Health Phys; 1997 Feb; 72(2):286-95. PubMed ID: 9003715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calibration factors for Ge detectors used for field spectrometry.
    Helfer IK; Miller KM
    Health Phys; 1988 Jul; 55(1):15-29. PubMed ID: 3391774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in situ gamma-ray spectrometry intercomparison.
    Shebell P; Faller S; Monetti M; Bronson F; Hagenauer R; Jarrell CL; Keefer D; Moos JR; Panzarino N; Reiman RT; Sparks BJ; Thisell M
    Health Phys; 2003 Dec; 85(6):662-77. PubMed ID: 14626318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A numerical method for the calibration of in situ gamma ray spectroscopy systems.
    Dewey SC; Whetstone ZD; Kearfott KJ
    Health Phys; 2010 May; 98(5):657-71. PubMed ID: 20386196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of a Monte Carlo method to the uncertainty assessment in in situ gamma-ray spectrometry.
    Persson L; Boson J; Nylén T; Ramebäck H
    J Environ Radioact; 2018 Jul; 187():1-7. PubMed ID: 29459254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ gamma-ray spectrometry for environmental monitoring: a semi empirical calibration method.
    Boson J; Lidström K; Nylén T; Agren G; Johansson L
    Radiat Prot Dosimetry; 2006; 121(3):310-6. PubMed ID: 16632586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-situ determination of deposited radionuclide activities: improved method using derived depth distributions from the measured photon spectra.
    Rybacek K; Jacob P; Meckbach R
    Health Phys; 1992 Jun; 62(6):519-28. PubMed ID: 1628983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy of field spectrometry in estimating 137Cs contamination in high altitude alpine soils.
    Agnesod G; Lazzaron R; Operti C; Zappa C
    Radiat Prot Dosimetry; 2001; 97(4):329-32. PubMed ID: 11878413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy associated with the activity determination by in situ gamma spectrometry of naturally occurring radionuclides in soils.
    Baeza A; Corbacho JA; Guillén J
    J Environ Radioact; 2016 Oct; 162-163():219-224. PubMed ID: 27267159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-situ measurements of 137Cs in soil by unfolding method.
    Fülöp M; Ragan P
    Health Phys; 1997 Jun; 72(6):923-30. PubMed ID: 9169934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards establishing traceability of results measured in specific counting conditions in gamma-ray spectrometry.
    Glavic-Cindro D; Korun M
    Appl Radiat Isot; 2004; 60(2-4):217-20. PubMed ID: 14987646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Monte Carlo-based calibrations of HPGe detectors for in situ gamma-ray spectrometry.
    Boson J; Plamboeck AH; Ramebäck H; Agren G; Johansson L
    J Environ Radioact; 2009 Nov; 100(11):935-40. PubMed ID: 19604609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of in situ and laboratory gamma spectroscopy of natural radionuclides in desert soil.
    Benke RR; Kearfott KJ
    Health Phys; 1997 Aug; 73(2):350-61. PubMed ID: 9228170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous measurement of radiation from radionuclides deposited on the ground using in situ gamma-ray spectrometry.
    Mirsch M; Barth J; Dalheimer A; Steinkopff T
    Radiat Prot Dosimetry; 2014 Aug; 160(4):248-51. PubMed ID: 24812073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of 226Ra contamination depth in soil using the multiple photopeaks method.
    Haddad Kh; Al-Masri MS; Doubal AW
    J Environ Radioact; 2014 Feb; 128():33-7. PubMed ID: 24292393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accounting for the depth distribution of 137Cs in on-line mobile gamma spectrometry through primary and forward-scattered photons.
    Hjerpe T; Samuelsson C
    Radiat Environ Biophys; 2002 Sep; 41(3):225-30. PubMed ID: 12373332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A practical approach to determining soil-sample detection efficiency in field gamma-ray spectroscopy.
    Warren G; Zalavadia M
    Appl Radiat Isot; 2021 Apr; 170():109457. PubMed ID: 33618215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of self-absorption corrections for gamma analysis of environmental samples: comparing gamma-absorption curves and spiked matrix-matched samples.
    McMahon CA; Fegan MF; Wong J; Long SC; Ryan TP; Colgan PA
    Appl Radiat Isot; 2004; 60(2-4):571-7. PubMed ID: 14987706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.