These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 9594227)

  • 1. Ultrastructural investigation of calcification and ossification in experimental fracture healing with special reference to osteogenic role of fibroblasts.
    Chai B; Tang X; Li H
    Chin Med J (Engl); 1997 Apr; 110(4):274-8. PubMed ID: 9594227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructural investigation of experimental fracture healing. Role of osteogenesis played by fibroblasts.
    Chai BF; Tang XM
    Chin Med J (Engl); 1986 Feb; 99(2):126-32. PubMed ID: 3093160
    [No Abstract]   [Full Text] [Related]  

  • 3. Ultrastructural analysis of bone calcification by using energy-filtering transmission electron microscopy.
    Hoshi K; Ejiri S; Ozawa H
    Ital J Anat Embryol; 2001; 106(2 Suppl 1):141-50. PubMed ID: 11729949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructural investigation on experimental fracture healing. VI. Electron microscopic observation on matrix vesicles.
    Chai BF; Tang XM
    Chin Med J (Engl); 1984 Nov; 97(11):805-12. PubMed ID: 6443271
    [No Abstract]   [Full Text] [Related]  

  • 5. Ultrastructural investigation of experimental fracture healing. III. Electron microscopic observation on deposition of calcium salt crystals.
    Chai BF; Tang XM
    Chin Med J (Engl); 1979 Oct; 92(10):688-92. PubMed ID: 116809
    [No Abstract]   [Full Text] [Related]  

  • 6. Osteogenesis of electrically stimulated bone cells mediated in part by calcium ions.
    Wang Q; Zhong S; Ouyang J; Jiang L; Zhang Z; Xie Y; Luo S
    Clin Orthop Relat Res; 1998 Mar; (348):259-68. PubMed ID: 9553560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastructural investigation of experimental non-union of fractures. A transmission electron microscopic study.
    Chai BF; Tang XM
    Chin Med J (Engl); 1986 Mar; 99(3):207-14. PubMed ID: 3095046
    [No Abstract]   [Full Text] [Related]  

  • 8. The ultrastructural cytology and chemical composition of fracture callus cartilage.
    Jafri AM; Huang SM; Ketenjian AY; Arsenis C
    Cytobios; 1977; 20(77):21-34. PubMed ID: 617303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collagen IX is indispensable for timely maturation of cartilage during fracture repair in mice.
    Opolka A; Ratzinger S; Schubert T; Spiegel HU; Grifka J; Bruckner P; Probst A; Grässel S
    Matrix Biol; 2007 Mar; 26(2):85-95. PubMed ID: 17112713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of osteogenic index, octahedral shear stress and dilatational stress in the ossification of a fracture callus.
    Gardner TN; Mishra S; Marks L
    Med Eng Phys; 2004 Jul; 26(6):493-501. PubMed ID: 15234685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model for intramembranous ossification during fracture healing.
    Thompson Z; Miclau T; Hu D; Helms JA
    J Orthop Res; 2002 Sep; 20(5):1091-8. PubMed ID: 12382977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of Swan-like Shape Memory Connector on stress shielding rate and callus development during experimental fracture healing process].
    Ren K; Zhang CC; Wang GY; Zhao JN; Sun JW
    Zhongguo Gu Shang; 2009 Mar; 22(3):202-5. PubMed ID: 19366104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrastructural investigation of experimental fracture healing. I. Electron microscopic observation of cellular activity.
    Benfu C; Xueming T
    Chin Med J (Engl); 1979 Aug; 92(8):530-5. PubMed ID: 113182
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of osteogenesis on dermal fibroblasts cultured in vitro.
    Xu RH; Rao HM; Zhu YP; Chai BF
    Chin Med J (Engl); 1993 Nov; 106(11):825-9. PubMed ID: 8143494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does static precede dynamic osteogenesis in endochondral ossification as occurs in intramembranous ossification?
    Ferretti M; Palumbo C; Bertoni L; Cavani F; Marotti G
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Nov; 288(11):1158-62. PubMed ID: 17031842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of parathyroid hormone-related peptide and insulin-like growth factor I during rat fracture healing.
    Okazaki K; Jingushi S; Ikenoue T; Urabe K; Sakai H; Iwamoto Y
    J Orthop Res; 2003 May; 21(3):511-20. PubMed ID: 12706025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary culture of rat growth plate chondrocytes: an in vitro model of growth plate histotype, matrix vesicle biogenesis and mineralization.
    Garimella R; Bi X; Camacho N; Sipe JB; Anderson HC
    Bone; 2004 Jun; 34(6):961-70. PubMed ID: 15193542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localisation of bone-forming cells during fracture healing by osteocalcin immunocytochemistry: an experimental study of the rabbit tibia.
    Stafford HJ; Roberts MT; Oni OO; Hay J; Gregg P
    J Orthop Res; 1994 Jan; 12(1):29-39. PubMed ID: 8113940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteogenic growth peptide enhances the rate of fracture healing in rabbits.
    Sun YQ; Ashhurst DE
    Cell Biol Int; 1998; 22(4):313-9. PubMed ID: 10101048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructural investigation of experimental fracture healing. IV. Electron microscopic observation on transformation and fate of fibroblasts and chondrocytes.
    Tang XM; Chai BF
    Chin Med J (Engl); 1981 May; 94(5):291-300. PubMed ID: 6788463
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.