These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 9594380)

  • 61. Contribution of somatic cell-associated activation of plasminogen to caseinolysis within the goat mammary gland.
    Weng MH; Chang CJ; Chen WY; Chou WK; Peh HC; Huang MC; Chen MT; Nagahata H
    J Dairy Sci; 2006 Jun; 89(6):2025-37. PubMed ID: 16702266
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Rheological properties of acid gels prepared from heated pH-adjusted skim milk.
    Anema SG; Lee SK; Lowe EK; Klostermeyer H
    J Agric Food Chem; 2004 Jan; 52(2):337-43. PubMed ID: 14733518
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Selenium binding and distribution in goat and cow milk.
    Allen JC; Miller WJ
    J Dairy Sci; 1980 Apr; 63(4):526-31. PubMed ID: 7381078
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Use of microfiltration to improve fluid milk quality.
    Elwell MW; Barbano DM
    J Dairy Sci; 2006 Mar; 89 Suppl 1():E20-30. PubMed ID: 16527875
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Acid gelation properties of heated skim milk as a result of enzymatically induced changes in the micelle/serum distribution of the whey protein/kappa-casein aggregates.
    Guyomarc'h F; Renan M; Chatriot M; Gamerre V; Famelart MH
    J Agric Food Chem; 2007 Dec; 55(26):10986-93. PubMed ID: 18038987
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Isolation of caseins from whey proteins by microfiltration modifying the mineral balance in skim milk.
    Hernández A; Harte FM
    J Dairy Sci; 2009 Nov; 92(11):5357-62. PubMed ID: 19841195
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Proteolysis of milk proteins lactosylated in model systems.
    Dalsgaard TK; Nielsen JH; Larsen LB
    Mol Nutr Food Res; 2007 Apr; 51(4):404-14. PubMed ID: 17357984
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Peptidomic approach based on combined capillary isoelectric focusing and mass spectrometry for the characterization of the plasmin primary products from bovine and water buffalo beta-casein.
    Somma A; Ferranti P; Addeo F; Mauriello R; Chianese L
    J Chromatogr A; 2008 May; 1192(2):294-300. PubMed ID: 18400224
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Heat-Treatments Affect Protease Activities and Peptide Profiles of Ruminants' Milk.
    Leite JAS; Montoya CA; Loveday SM; Maes E; Mullaney JA; McNabb WC; Roy NC
    Front Nutr; 2021; 8():626475. PubMed ID: 33777990
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Detection of the apr gene in proteolytic psychrotrophic bacteria isolated from refrigerated raw milk.
    Martins ML; de Araújo EF; Mantovani HC; Moraes CA; Vanetti MC
    Int J Food Microbiol; 2005 Jul; 102(2):203-11. PubMed ID: 15992619
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Enzymatic assays for native plasmin, plasminogen and plasminogen activators in bovine milk.
    Saint-Denis BT; Humbert G; Gaillard JL
    J Dairy Res; 2001 Aug; 68(3):437-49. PubMed ID: 11694046
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Casein interference in bovine plasmin assays using a synthetic substrate.
    Bastian ED; Brown RJ; Ernstrom CA
    J Dairy Sci; 1991 Dec; 74(12):4119-24. PubMed ID: 1838556
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Changes in milk plasminogen, plasmin and in vitro bacterial growth in whey during early lactation.
    Kaartinen L; Pyörälä S
    J Dairy Res; 1989 Nov; 56(5):719-25. PubMed ID: 2531763
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effect of thermoresistant protease of Pseudomonas fluorescens on rennet coagulation properties and proteolysis of milk.
    Paludetti LF; Kelly AL; Gleeson D
    J Dairy Sci; 2020 May; 103(5):4043-4055. PubMed ID: 32147268
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effect of bovine plasmin on alpha-S1-B and kappa-A caseins.
    Eigel WN
    J Dairy Sci; 1977 Sep; 60(9):1399-403. PubMed ID: 144146
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effects of somatic cell count and stage of lactation on the plasmin activity and cheese-making properties of ewe milk.
    Albenzio M; Caroprese M; Santillo A; Marino R; Taibi L; Sevi A
    J Dairy Sci; 2004 Mar; 87(3):533-42. PubMed ID: 15202636
    [TBL] [Abstract][Full Text] [Related]  

  • 77. 14C-Methylated beta-casein as a substrate for plasmin, and its application to the study of milk protein transformations.
    Donnelly WJ; Barry JG; Richardson T
    Biochim Biophys Acta; 1980 Nov; 626(1):117-26. PubMed ID: 6450617
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effect of subclinical mastitis on milk plasminogen and plasmin compared with that on sodium, antitrypsin and N-acetyl-beta-D-glucosaminidase.
    Schaar J; Funke H
    J Dairy Res; 1986 Nov; 53(4):515-28. PubMed ID: 2947939
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Quantitative and qualitative variability of the caseinolytic potential of different strains of Pseudomonas fluorescens: implications for the stability of casein micelles of UHT milks during their storage.
    Baglinière F; Tanguy G; Jardin J; Matéos A; Briard V; Rousseau F; Robert B; Beaucher E; Humbert G; Dary A; Gaillard JL; Amiel C; Gaucheron F
    Food Chem; 2012 Dec; 135(4):2593-603. PubMed ID: 22980847
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [Purification and characterization of proteases from Pseudomonas fluorescens and their effects on milk proteins].
    Costa M; Gómez MF; Molina LH; Simpson R; Romero A
    Arch Latinoam Nutr; 2002 Jun; 52(2):160-6. PubMed ID: 12184150
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.