These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 9594654)

  • 41. Isolation, purification, and identification of the virulence protein VirE2 from Agrobacterium tumefaciens.
    Volokhina I; Sazonova I; Velikov V; Chumakov M
    Microbiol Res; 2005; 160(1):67-73. PubMed ID: 15782940
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Three methods for the introduction of foreign DNA into Agrobacterium.
    Wise AA; Liu Z; Binns AN
    Methods Mol Biol; 2006; 343():43-53. PubMed ID: 16988332
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interaction of the virulence protein VirF of Agrobacterium tumefaciens with plant homologs of the yeast Skp1 protein.
    Schrammeijer B; Risseeuw E; Pansegrau W; Regensburg-Tuïnk TJ; Crosby WL; Hooykaas PJ
    Curr Biol; 2001 Feb; 11(4):258-62. PubMed ID: 11250154
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Agrobacterium tumefaciens Gene Transfer: How a Plant Pathogen Hacks the Nuclei of Plant and Nonplant Organisms.
    Bourras S; Rouxel T; Meyer M
    Phytopathology; 2015 Oct; 105(10):1288-301. PubMed ID: 26151736
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biological activity of the tzs gene of nopaline Agrobacterium tumefaciens GV3101 in plant regeneration and genetic transformation.
    Han ZF; Hunter DM; Sibbald S; Zhang JS; Tian L
    Mol Plant Microbe Interact; 2013 Nov; 26(11):1359-65. PubMed ID: 24088018
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interactions of VirB9, -10, and -11 with the membrane fraction of Agrobacterium tumefaciens: solubility studies provide evidence for tight associations.
    Finberg KE; Muth TR; Young SP; Maken JB; Heitritter SM; Binns AN; Banta LM
    J Bacteriol; 1995 Sep; 177(17):4881-9. PubMed ID: 7665464
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transcriptomic Analysis of Arabidopsis Seedlings in Response to an Agrobacterium-Mediated Transformation Process.
    Duan K; Willig CJ; De Tar JR; Spollen WG; Zhang ZJ
    Mol Plant Microbe Interact; 2018 Apr; 31(4):445-459. PubMed ID: 29171790
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pathogenic plant-microbe interactions. What we know and how we benefit.
    Montesinos E
    Int Microbiol; 2000 Jun; 3(2):69-70. PubMed ID: 11001534
    [No Abstract]   [Full Text] [Related]  

  • 49. Plant transformation: a pilus in Agrobacterium T-DNA transfer.
    Baron C; Zambryski PC
    Curr Biol; 1996 Dec; 6(12):1567-9. PubMed ID: 8994814
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Agrobacterium rhizogenes GALLS gene encodes two secreted proteins required for genetic transformation of plants.
    Hodges LD; Lee LY; McNett H; Gelvin SB; Ream W
    J Bacteriol; 2009 Jan; 191(1):355-64. PubMed ID: 18952790
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefaciens.
    Rossi L; Hohn B; Tinland B
    Proc Natl Acad Sci U S A; 1996 Jan; 93(1):126-30. PubMed ID: 8552588
    [TBL] [Abstract][Full Text] [Related]  

  • 52.
    Li X; Pan SQ
    Sci Adv; 2017 Mar; 3(3):e1601528. PubMed ID: 28345032
    [No Abstract]   [Full Text] [Related]  

  • 53. VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity.
    Tzfira T; Vaidya M; Citovsky V
    EMBO J; 2001 Jul; 20(13):3596-607. PubMed ID: 11432846
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Common mechanisms in bacterial conjugation and Ti-mediated T-DNA transfer to plant cells.
    Lessl M; Lanka E
    Cell; 1994 May; 77(3):321-4. PubMed ID: 8181052
    [No Abstract]   [Full Text] [Related]  

  • 55. Improving plant transformation using Agrobacterium tumefaciens.
    Ribeiro Neto LV; Oliveira AP; Lourenço MV; Bertoni BW; França SC; Rosa-Santos TM; Zingaretti SM
    Genet Mol Res; 2015 Jun; 14(2):6695-8. PubMed ID: 26125878
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Function and Regulation of Agrobacterium tumefaciens Cell Surface Structures that Promote Attachment.
    Thompson MA; Onyeziri MC; Fuqua C
    Curr Top Microbiol Immunol; 2018; 418():143-184. PubMed ID: 29998422
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Restoration of attachment, virulence and nodulation of Agrobacterium tumefaciens chvB mutants by rhicadhesin.
    Swart S; Smit G; Lugtenberg BJ; Kijne JW
    Mol Microbiol; 1993 Nov; 10(3):597-605. PubMed ID: 7968537
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Virulence of Agrobacterium tumefaciens requires lipid homeostasis mediated by the lysyl-phosphatidylglycerol hydrolase AcvB.
    Groenewold MK; Hebecker S; Fritz C; Czolkoss S; Wiesselmann M; Heinz DW; Jahn D; Narberhaus F; Aktas M; Moser J
    Mol Microbiol; 2019 Jan; 111(1):269-286. PubMed ID: 30353924
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Agrobacterium tumefaciens VirB11 protein requires a consensus nucleotide-binding site for function in virulence.
    Stephens KM; Roush C; Nester E
    J Bacteriol; 1995 Jan; 177(1):27-36. PubMed ID: 7798144
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reconstitution of acetosyringone-mediated Agrobacterium tumefaciens virulence gene expression in the heterologous host Escherichia coli.
    Lohrke SM; Yang H; Jin S
    J Bacteriol; 2001 Jun; 183(12):3704-11. PubMed ID: 11371534
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.