These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 9595553)

  • 1. Estimation of structural similarity of membrane proteins by hydropathy profile alignment.
    Lolkema JS; Slotboom DJ
    Mol Membr Biol; 1998; 15(1):33-42. PubMed ID: 9595553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydropathy profile alignment: a tool to search for structural homologues of membrane proteins.
    Lolkema JS; Slotboom DJ
    FEMS Microbiol Rev; 1998 Oct; 22(4):305-22. PubMed ID: 9862124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new method for identification of protein (sub)families in a set of proteins based on hydropathy distribution in proteins.
    Pánek J; Eidhammer I; Aasland R
    Proteins; 2005 Mar; 58(4):923-34. PubMed ID: 15645428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence and hydropathy profile analysis of two classes of secondary transporters.
    Lolkema JS; Slotboom DJ
    Mol Membr Biol; 2005; 22(3):177-89. PubMed ID: 16096261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane topology prediction by hydropathy profile alignment: membrane topology of the Na(+)-glutamate transporter GltS.
    Dobrowolski A; Sobczak-Elbourne I; Lolkema JS
    Biochemistry; 2007 Mar; 46(9):2326-32. PubMed ID: 17269795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using hydropathy features for function prediction of membrane proteins.
    Pánek J; Eidhammer I; Aasland R
    Mol Membr Biol; 2007; 24(4):304-12. PubMed ID: 17520486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of novel membrane proteins by searching for patterns in hydropathy profiles.
    Clements JD; Martin RE
    Eur J Biochem; 2002 Apr; 269(8):2101-7. PubMed ID: 11985587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of protein structures using 3D profile alignment.
    Suyama M; Matsuo Y; Nishikawa K
    J Mol Evol; 1997; 44 Suppl 1():S163-73. PubMed ID: 9071025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of 29 families of secondary transport proteins into a single structural class using hydropathy profile analysis.
    Lolkema JS; Slotboom DJ
    J Mol Biol; 2003 Apr; 327(5):901-9. PubMed ID: 12662917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining the fold space of membrane proteins: the CAMPS database.
    Martin-Galiano AJ; Frishman D
    Proteins; 2006 Sep; 64(4):906-22. PubMed ID: 16802318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence similarity as a predictor of the transmembrane topology of membrane-intrinsic subunits of bacterial respiratory chain enzymes.
    Rothery RA; Kalra N; Turner RJ; Weiner JH
    J Mol Microbiol Biotechnol; 2002 Mar; 4(2):133-50. PubMed ID: 11873909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence and phylogenetic analyses of 4 TMS junctional proteins of animals: connexins, innexins, claudins and occludins.
    Hua VB; Chang AB; Tchieu JH; Kumar NM; Nielsen PA; Saier MH
    J Membr Biol; 2003 Jul; 194(1):59-76. PubMed ID: 14502443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel measure characterized by a polar energy surface approximation for recognition and classification of transmembrane protein structures.
    Suwa M; Yudate HT; Masuho Y; Mitaku S
    Proteins; 2000 Dec; 41(4):504-17. PubMed ID: 11056038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of sequence profiles. Strategies for structural predictions using sequence information.
    Rychlewski L; Jaroszewski L; Li W; Godzik A
    Protein Sci; 2000 Feb; 9(2):232-41. PubMed ID: 10716175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure alignment of membrane proteins: Accuracy of available tools and a consensus strategy.
    Stamm M; Forrest LR
    Proteins; 2015 Sep; 83(9):1720-32. PubMed ID: 26178143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic algorithm-based optimization of hydrophobicity tables.
    Zviling M; Leonov H; Arkin IT
    Bioinformatics; 2005 Jun; 21(11):2651-6. PubMed ID: 15797910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A critical evaluation of the hydropathy profile of membrane proteins.
    Degli Esposti M; Crimi M; Venturoli G
    Eur J Biochem; 1990 May; 190(1):207-19. PubMed ID: 2364947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrimination of Golgi type II membrane proteins based on their hydropathy profiles and the amino acid propensities of their transmembrane regions.
    Mukai Y; Yoshizawa M; Sasaki T; Ikeda M; Tomii K; Hirokawa T; Suwa M
    Biosci Biotechnol Biochem; 2011; 75(1):82-8. PubMed ID: 21228484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fold recognition by combining sequence profiles derived from evolution and from depth-dependent structural alignment of fragments.
    Zhou H; Zhou Y
    Proteins; 2005 Feb; 58(2):321-8. PubMed ID: 15523666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.