BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 9595668)

  • 1. The Bacillus subtilis glpD leader and antiterminator protein GlpP provide a target for glucose repression in Escherichia coli.
    Glatz E; Farewell A; Rutberg B
    FEMS Microbiol Lett; 1998 May; 162(1):93-6. PubMed ID: 9595668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antiterminator protein GlpP of Bacillus subtilis binds to glpD leader mRNA.
    Glatz E; Persson M; Rutberg B
    Microbiology (Reading); 1998 Feb; 144 ( Pt 2)():449-456. PubMed ID: 9493382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dual role for the Bacillus subtilis glpD leader and the GlpP protein in the regulated expression of glpD: antitermination and control of mRNA stability.
    Glatz E; Nilsson RP; Rutberg L; Rutberg B
    Mol Microbiol; 1996 Jan; 19(2):319-28. PubMed ID: 8825777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different processing of an mRNA species in Bacillus subtilis and Escherichia coli.
    Persson M; Glatz E; Rutberg B
    J Bacteriol; 2000 Feb; 182(3):689-95. PubMed ID: 10633102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of the gene encoding glycerol-3-phosphate dehydrogenase (glpD) in Bacillus subtilis is controlled by antitermination.
    Holmberg C; Rutberg B
    Mol Microbiol; 1991 Dec; 5(12):2891-900. PubMed ID: 1809833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An inverted repeat preceding the Bacillus subtilis glpD gene is a conditional terminator of transcription.
    Holmberg C; Rutberg L
    Mol Microbiol; 1992 Oct; 6(20):2931-8. PubMed ID: 1479885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The glpP and glpF genes of the glycerol regulon in Bacillus subtilis.
    Beijer L; Nilsson RP; Holmberg C; Rutberg L
    J Gen Microbiol; 1993 Feb; 139(2):349-59. PubMed ID: 8436953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycerol catabolism in Bacillus subtilis: nucleotide sequence of the genes encoding glycerol kinase (glpK) and glycerol-3-phosphate dehydrogenase (glpD).
    Holmberg C; Beijer L; Rutberg B; Rutberg L
    J Gen Microbiol; 1990 Dec; 136(12):2367-75. PubMed ID: 2127799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Positively regulated glycerol/G3P-dependent Bacillus subtilis gene expression system based on anti-termination.
    Lewin A; Su XD; Hederstedt L
    J Mol Microbiol Biotechnol; 2009; 17(2):61-70. PubMed ID: 18946204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning of the glycerol kinase gene of Bacillus subtilis.
    Holmberg C; Rutberg B
    FEMS Microbiol Lett; 1989 Apr; 49(2-3):151-5. PubMed ID: 2545516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Action at a distance for negative control of transcription of the glpD gene encoding sn-glycerol 3-phosphate dehydrogenase of Escherichia coli K-12.
    Yang B; Larson TJ
    J Bacteriol; 1996 Dec; 178(24):7090-8. PubMed ID: 8955388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploration of key residues and conformational change of anti-terminator protein GlpP for ligand and RNA binding.
    Chen Q; Cui W; Zhou Z; Han L
    Proteins; 2021 Jun; 89(6):623-631. PubMed ID: 33455022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The glpD gene is a novel reporter gene for E. coli that is superior to established reporter genes like lacZ and gusA.
    Wegener M; Vogtmann K; Huber M; Laass S; Soppa J
    J Microbiol Methods; 2016 Dec; 131():181-187. PubMed ID: 27794441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and characterization of the aerobic sn-glycerol-3-phosphate dehydrogenase structural gene glpD of Escherichia coli K-12.
    Schweizer H; Larson TJ
    J Bacteriol; 1987 Feb; 169(2):507-13. PubMed ID: 3027031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of the Bgl+ phenotype of a delta hns strain of Escherichia coli by a Bacillus subtilis antiterminator binding site.
    Beloin C; Hirschbein L; Le Hégarat F
    Mol Gen Genet; 1996 Apr; 250(6):761-6. PubMed ID: 8628237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribosomal protein L10(L12)4 autoregulates expression of the Bacillus subtilis rplJL operon by a transcription attenuation mechanism.
    Yakhnin H; Yakhnin AV; Babitzke P
    Nucleic Acids Res; 2015 Aug; 43(14):7032-43. PubMed ID: 26101249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific interaction of the RNA-binding domain of the bacillus subtilis transcriptional antiterminator GlcT with its RNA target, RAT.
    Langbein I; Bachem S; Stülke J
    J Mol Biol; 1999 Nov; 293(4):795-805. PubMed ID: 10543968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilisation of glycerol and glycerol 3-phosphate is differently affected by the phosphotransferase system in Bacillus subtilis.
    Beijer L; Rutberg L
    FEMS Microbiol Lett; 1992 Dec; 100(1-3):217-20. PubMed ID: 1335945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A general method for fusion of the Escherichia coli lacZ gene to chromosomal genes in Bacillus subtilis.
    Errington J
    J Gen Microbiol; 1986 Nov; 132(11):2953-66. PubMed ID: 3114418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. tRNA-mediated transcription antitermination in vitro: codon-anticodon pairing independent of the ribosome.
    Grundy FJ; Winkler WC; Henkin TM
    Proc Natl Acad Sci U S A; 2002 Aug; 99(17):11121-6. PubMed ID: 12165569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.