These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 9596355)

  • 1. Vascular head pain selectively activates ventrolateral periaqueductal gray in the cat.
    Keay KA; Bandler R
    Neurosci Lett; 1998 Mar; 245(1):58-60. PubMed ID: 9596355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Common patterns of increased and decreased fos expression in midbrain and pons evoked by noxious deep somatic and noxious visceral manipulations in the rat.
    Clement CI; Keay KA; Owler BK; Bandler R
    J Comp Neurol; 1996 Mar; 366(3):495-515. PubMed ID: 8907361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterns of fos expression in the rostral medulla and caudal pons evoked by noxious craniovascular stimulation and periaqueductal gray stimulation in the cat.
    Knight YE; Classey JD; Lasalandra MP; Akerman S; Kowacs F; Hoskin KL; Goadsby PJ
    Brain Res; 2005 May; 1045(1-2):1-11. PubMed ID: 15910757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noxious activation of spinal or vagal afferents evokes distinct patterns of fos-like immunoreactivity in the ventrolateral periaqueductal gray of unanaesthetised rats.
    Keay KA; Clement CI; Matar WM; Heslop DJ; Henderson LA; Bandler R
    Brain Res; 2002 Sep; 948(1-2):122-30. PubMed ID: 12383963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep and superficial noxious stimulation increases Fos-like immunoreactivity in different regions of the midbrain periaqueductal grey of the rat.
    Keay KA; Bandler R
    Neurosci Lett; 1993 May; 154(1-2):23-6. PubMed ID: 8361643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spinal sources of noxious visceral and noxious deep somatic afferent drive onto the ventrolateral periaqueductal gray of the rat.
    Clement CI; Keay KA; Podzebenko K; Gordon BD; Bandler R
    J Comp Neurol; 2000 Sep; 425(3):323-44. PubMed ID: 10972936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fos expression in the midbrain periaqueductal grey after trigeminovascular stimulation.
    Hoskin KL; Bulmer DC; Lasalandra M; Jonkman A; Goadsby PJ
    J Anat; 2001 Jan; 198(Pt 1):29-35. PubMed ID: 11215764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laryngeal afferent stimulation enhances Fos immunoreactivity in periaqueductal gray in the cat.
    Ambalavanar R; Tanaka Y; Damirjian M; Ludlow CL
    J Comp Neurol; 1999 Jul; 409(3):411-23. PubMed ID: 10379827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. c-Fos expression in the midbrain periaqueductal gray during static muscle contraction.
    Li J; Mitchell JH
    Am J Physiol Heart Circ Physiol; 2000 Dec; 279(6):H2986-93. PubMed ID: 11087256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroacupuncture induces c-Fos expression in the rostral ventrolateral medulla and periaqueductal gray in cats: relation to opioid containing neurons.
    Guo ZL; Moazzami AR; Longhurst JC
    Brain Res; 2004 Dec; 1030(1):103-15. PubMed ID: 15567342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conditioned fear to context is associated with increased Fos expression in the caudal ventrolateral region of the midbrain periaqueductal gray.
    Carrive P; Leung P; Harris J; Paxinos G
    Neuroscience; 1997 May; 78(1):165-77. PubMed ID: 9135098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convergence of deep somatic and visceral nociceptive information onto a discrete ventrolateral midbrain periaqueductal gray region.
    Keay KA; Clement CI; Owler B; Depaulis A; Bandler R
    Neuroscience; 1994 Aug; 61(4):727-32. PubMed ID: 7838371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of c-Fos-like immunoreactivity in the caudal medulla and upper cervical spinal cord following stimulation of the superior sagittal sinus in the cat.
    Kaube H; Keay KA; Hoskin KL; Bandler R; Goadsby PJ
    Brain Res; 1993 Nov; 629(1):95-102. PubMed ID: 8287282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle pain activates a direct projection from ventrolateral periaqueductal gray to rostral ventrolateral medulla in rats.
    Keay KA; Li QF; Bandler R
    Neurosci Lett; 2000 Sep; 290(3):157-60. PubMed ID: 10963887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamatergic cells in the periaqueductal gray matter mediate sensory inputs after bladder stimulation in freely moving rats.
    Zare A; Jahanshahi A; Meriaux C; Steinbusch HW; van Koeveringe GA
    Int J Urol; 2018 Jun; 25(6):621-626. PubMed ID: 29577439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different representations of inescapable noxious stimuli in the periaqueductal gray and upper cervical spinal cord of freely moving rats.
    Keay KA; Clement CI; Depaulis A; Bandler R
    Neurosci Lett; 2001 Nov; 313(1-2):17-20. PubMed ID: 11684329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fos expression induced by changes in arterial pressure is localized in distinct, longitudinally organized columns of neurons in the rat midbrain periaqueductal gray.
    Murphy AZ; Ennis M; Rizvi TA; Behbehani MM; Shipley MT
    J Comp Neurol; 1995 Sep; 360(2):286-300. PubMed ID: 8522648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The NMDA receptor antagonist MK-801 reduces Fos-like immunoreactivity within the trigeminocervical complex following superior sagittal sinus stimulation in the cat.
    Classey JD; Knight YE; Goadsby PJ
    Brain Res; 2001 Jul; 907(1-2):117-24. PubMed ID: 11430892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. C-fos immunoreactivity in the brain following unilateral electrical stimulation of the dorsal periaqueductal gray in freely moving rats.
    Sandner G; Di Scala G; Rocha B; Angst MJ
    Brain Res; 1992 Feb; 573(2):276-83. PubMed ID: 1504765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct patterns of activated neurons throughout the rat midbrain periaqueductal gray induced by chemical stimulation within its subdivisions.
    Sandkühler J; Herdegen T
    J Comp Neurol; 1995 Jul; 357(4):546-53. PubMed ID: 7673484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.