These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 9596543)

  • 1. Improved extrapolation techniques in recursive digital filtering: a comparison of least squares and prediction.
    Giakas G; Baltzopoulos V; Bartlett RM
    J Biomech; 1998 Jan; 31(1):87-91. PubMed ID: 9596543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endpoint error in smoothing and differentiating raw kinematic data: an evaluation of four popular methods.
    Vint PF; Hinrichs RN
    J Biomech; 1996 Dec; 29(12):1637-42. PubMed ID: 8945665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The rule of 1s for padding kinematic data prior to digital filtering: influence of sampling and filter cutoff frequencies.
    Howarth SJ; Callaghan JP
    J Electromyogr Kinesiol; 2009 Oct; 19(5):875-81. PubMed ID: 18462952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Padding point extrapolation techniques for the Butterworth digital filter.
    Smith G
    J Biomech; 1989; 22(8-9):967-71. PubMed ID: 2613731
    [No Abstract]   [Full Text] [Related]  

  • 5. Automatic algorithm for filtering kinematic signals with impacts in the Wigner representation.
    Georgakis A; Stergioulas LK; Giakas G
    Med Biol Eng Comput; 2002 Nov; 40(6):625-33. PubMed ID: 12507312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smoothing and differentiation of displacement-time data: an application of splines and digital filtering.
    Vaughan CL
    Int J Biomed Comput; 1982 Sep; 13(5):375-86. PubMed ID: 6897057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic segment filtering procedure for processing non-stationary signals.
    Davis DJ; Challis JH
    J Biomech; 2020 Mar; 101():109619. PubMed ID: 31952818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemometrics-assisted simultaneous voltammetric determination of ascorbic acid, uric acid, dopamine and nitrite: application of non-bilinear voltammetric data for exploiting first-order advantage.
    Gholivand MB; Jalalvand AR; Goicoechea HC; Skov T
    Talanta; 2014 Feb; 119():553-63. PubMed ID: 24401455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of glucose concentrations in an aqueous matrix from NIR spectra using optimal time-domain filtering and partial least-squares regression.
    Ham FM; Kostanic IN; Cohen GM; Gooch BR
    IEEE Trans Biomed Eng; 1997 Jun; 44(6):475-85. PubMed ID: 9151481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous learning and filtering without delusions: a Bayes-optimal combination of Predictive Inference and Adaptive Filtering.
    Kneissler J; Drugowitsch J; Friston K; Butz MV
    Front Comput Neurosci; 2015; 9():47. PubMed ID: 25983690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filtering of kinematic signals using the Hodrick-Prescott filter.
    Alonso FJ; Pintado P; Del Castillo JM
    J Appl Biomech; 2005 Aug; 21(3):271-85. PubMed ID: 16260847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying the Subharmonic Mucosal Wave in Excised Larynges via Digital Kymography.
    Zhang Y; Huang N; Calawerts W; Li L; Maytag AL; Jiang JJ
    J Voice; 2017 Jan; 31(1):123.e7-123.e13. PubMed ID: 27105856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of singular spectrum analysis to the smoothing of raw kinematic signals.
    Alonso FJ; Castillo JM; Pintado P
    J Biomech; 2005 May; 38(5):1085-92. PubMed ID: 15797590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validity of a trunk-mounted accelerometer to assess peak accelerations during walking, jogging and running.
    Wundersitz DW; Gastin PB; Richter C; Robertson SJ; Netto KJ
    Eur J Sport Sci; 2015; 15(5):382-90. PubMed ID: 25196466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal digital filtering requires a different cut-off frequency strategy for the determination of the higher derivatives.
    Giakas G; Baltzopoulos V
    J Biomech; 1997 Aug; 30(8):851-5. PubMed ID: 9239572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A masked least-squares smoothing procedure for artifact reduction in scanning-EMG recordings.
    Corera Í; Eciolaza A; Rubio O; Malanda A; Rodríguez-Falces J; Navallas J
    Med Biol Eng Comput; 2018 Aug; 56(8):1391-1402. PubMed ID: 29327334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculation of forward and backward arterial waves by analysis of two pressure waveforms.
    Swamy G; Olivier NB; Mukkamala R
    IEEE Trans Biomed Eng; 2010 Dec; 57(12):2833-9. PubMed ID: 20833598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spline solution to terminal zero acceleration problems in biomechanical data.
    Phillips SJ; Roberts EM
    Med Sci Sports Exerc; 1983; 15(5):382-7. PubMed ID: 6645866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Neural Approach to the Underdetermined-Order Recursive Least-Squares Adaptive Filtering.
    Constantinides AG; Baykal B
    Neural Netw; 1997 Nov; 10(8):1523-1531. PubMed ID: 12662491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discrete wavelet transform: a tool in smoothing kinematic data.
    Ismail AR; Asfour SS
    J Biomech; 1999 Mar; 32(3):317-21. PubMed ID: 10093032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.