BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 9597003)

  • 1. Senescent WI-38 fibroblasts overexpress LPC-1, a putative transmembrane shock protein.
    Pignolo RJ; Rotenberg MO; Horton JH; Cristofalo VJ
    Exp Cell Res; 1998 May; 240(2):305-11. PubMed ID: 9597003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of EPC-1 growth state-dependent expression, specificity, and conservation of related sequences.
    Pignolo RJ; Rotenberg MO; Cristofalo VJ
    J Cell Physiol; 1995 Jan; 162(1):110-8. PubMed ID: 7814443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Senescent WI-38 cells fail to express EPC-1, a gene induced in young cells upon entry into the G0 state.
    Pignolo RJ; Cristofalo VJ; Rotenberg MO
    J Biol Chem; 1993 Apr; 268(12):8949-57. PubMed ID: 8473338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attenuated expression of 70-kDa heat shock protein in WI-38 human fibroblasts during aging in vitro.
    Bonelli MA; Alfieri RR; Petronini PG; Brigotti M; Campanini C; Borghetti AF
    Exp Cell Res; 1999 Oct; 252(1):20-32. PubMed ID: 10502396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of donor age on the expression of a marker of replicative senescence (EPC-1) in human dermal fibroblasts.
    Tresini M; Pignolo RJ; Allen RG; Cristofalo VJ
    J Cell Physiol; 1999 Apr; 179(1):11-7. PubMed ID: 10082127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. c-Myc creates an activation loop by transcriptionally repressing its own functional inhibitor, hMad4, in young fibroblasts, a loop lost in replicatively senescent fibroblasts.
    Marcotte R; Chen JM; Huard S; Wang E
    J Cell Biochem; 2005 Dec; 96(5):1071-85. PubMed ID: 16167342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Down-regulation of cdc2 in senescent human and hamster cells.
    Richter KH; Afshari CA; Annab LA; Burkhart BA; Owen RD; Boyd J; Barrett JC
    Cancer Res; 1991 Nov; 51(21):6010-3. PubMed ID: 1933864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IGF-1 receptor levels and the proliferation of young and senescent human fibroblasts.
    Sell C; Ptasznik A; Chang CD; Swantek J; Cristofalo VJ; Baserga R
    Biochem Biophys Res Commun; 1993 Jul; 194(1):259-65. PubMed ID: 7687431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mouse lens fiber-cell intrinsic membrane protein MP19 gene (Lim2) and granule membrane protein GMP-17 gene (Nkg7): Isolation and sequence analysis of two neighboring genes.
    Zhou L; Li X; Church RL
    Mol Vis; 2001 Apr; 7():79-88. PubMed ID: 11290961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mRNA level of alpha-2-macroglobulin as an aging biomarker of human fibroblasts in culture.
    Ma H; Li R; Zhang Z; Tong T
    Exp Gerontol; 2004 Mar; 39(3):415-21. PubMed ID: 15036401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elevated expression of mitochondrial cytochrome b and NADH dehydrogenase subunit 4/4L genes in senescent human cells.
    Kodama S; Yamada H; Annab L; Barrett JC
    Exp Cell Res; 1995 Jul; 219(1):82-6. PubMed ID: 7628554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of differentially expressed proteins in senescent human embryonic fibroblasts.
    Trougakos IP; Saridaki A; Panayotou G; Gonos ES
    Mech Ageing Dev; 2006 Jan; 127(1):88-92. PubMed ID: 16213575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that density-dependent growth arrest is a two-stage process in WI-38 cells.
    Owen TA; Carter R; Whitman MM; Soprano DR; Soprano KJ
    J Cell Physiol; 1990 Jan; 142(1):137-48. PubMed ID: 1688860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell cycle-dependent regulation of Ca2+ in young and senescent WI-38 cells.
    Brooks-Frederich KM; Cianciarulo FL; Rittling SR; Cristofalo VJ
    Exp Cell Res; 1993 Apr; 205(2):412-5. PubMed ID: 8482347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of a subtractive cDNA library enriched in cDNAs which expressed at a high level in cultured senescent human fibroblasts.
    Tahara H; Hara E; Tsuyama N; Oda K; Ide T
    Biochem Biophys Res Commun; 1994 Mar; 199(3):1108-12. PubMed ID: 7511891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth-regulated expression of FKBP-59 immunophilin in normal and transformed fibroblastic cells.
    Doucet-Brutin S; Renoir M; Le Gallic L; Vincent S; Marty L; Fort P
    Exp Cell Res; 1995 Sep; 220(1):152-60. PubMed ID: 7664831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneity of dimer excision in young and senescent human dermal fibroblasts.
    Boyle J; Kill IR; Parris CN
    Aging Cell; 2005 Oct; 4(5):247-55. PubMed ID: 16164424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of microarrays to find novel regulators of periodontal ligament fibroblast differentiation.
    Lallier TE; Spencer A
    Cell Tissue Res; 2007 Jan; 327(1):93-109. PubMed ID: 17024420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of proteins differentially expressed in quiescent and proliferatively senescent fibroblast cultures.
    DiPaolo BR; Pignolo RJ; Cristofalo VJ
    Exp Cell Res; 1995 Sep; 220(1):178-85. PubMed ID: 7664833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microarray analysis of E-box binding-related gene expression in young and replicatively senescent human fibroblasts.
    Semov A; Marcotte R; Semova N; Ye X; Wang E
    Anal Biochem; 2002 Mar; 302(1):38-51. PubMed ID: 11846374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.