These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 9597003)

  • 1. Senescent WI-38 fibroblasts overexpress LPC-1, a putative transmembrane shock protein.
    Pignolo RJ; Rotenberg MO; Horton JH; Cristofalo VJ
    Exp Cell Res; 1998 May; 240(2):305-11. PubMed ID: 9597003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of EPC-1 growth state-dependent expression, specificity, and conservation of related sequences.
    Pignolo RJ; Rotenberg MO; Cristofalo VJ
    J Cell Physiol; 1995 Jan; 162(1):110-8. PubMed ID: 7814443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Senescent WI-38 cells fail to express EPC-1, a gene induced in young cells upon entry into the G0 state.
    Pignolo RJ; Cristofalo VJ; Rotenberg MO
    J Biol Chem; 1993 Apr; 268(12):8949-57. PubMed ID: 8473338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attenuated expression of 70-kDa heat shock protein in WI-38 human fibroblasts during aging in vitro.
    Bonelli MA; Alfieri RR; Petronini PG; Brigotti M; Campanini C; Borghetti AF
    Exp Cell Res; 1999 Oct; 252(1):20-32. PubMed ID: 10502396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of donor age on the expression of a marker of replicative senescence (EPC-1) in human dermal fibroblasts.
    Tresini M; Pignolo RJ; Allen RG; Cristofalo VJ
    J Cell Physiol; 1999 Apr; 179(1):11-7. PubMed ID: 10082127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. c-Myc creates an activation loop by transcriptionally repressing its own functional inhibitor, hMad4, in young fibroblasts, a loop lost in replicatively senescent fibroblasts.
    Marcotte R; Chen JM; Huard S; Wang E
    J Cell Biochem; 2005 Dec; 96(5):1071-85. PubMed ID: 16167342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Down-regulation of cdc2 in senescent human and hamster cells.
    Richter KH; Afshari CA; Annab LA; Burkhart BA; Owen RD; Boyd J; Barrett JC
    Cancer Res; 1991 Nov; 51(21):6010-3. PubMed ID: 1933864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IGF-1 receptor levels and the proliferation of young and senescent human fibroblasts.
    Sell C; Ptasznik A; Chang CD; Swantek J; Cristofalo VJ; Baserga R
    Biochem Biophys Res Commun; 1993 Jul; 194(1):259-65. PubMed ID: 7687431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mouse lens fiber-cell intrinsic membrane protein MP19 gene (Lim2) and granule membrane protein GMP-17 gene (Nkg7): Isolation and sequence analysis of two neighboring genes.
    Zhou L; Li X; Church RL
    Mol Vis; 2001 Apr; 7():79-88. PubMed ID: 11290961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mRNA level of alpha-2-macroglobulin as an aging biomarker of human fibroblasts in culture.
    Ma H; Li R; Zhang Z; Tong T
    Exp Gerontol; 2004 Mar; 39(3):415-21. PubMed ID: 15036401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elevated expression of mitochondrial cytochrome b and NADH dehydrogenase subunit 4/4L genes in senescent human cells.
    Kodama S; Yamada H; Annab L; Barrett JC
    Exp Cell Res; 1995 Jul; 219(1):82-6. PubMed ID: 7628554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of differentially expressed proteins in senescent human embryonic fibroblasts.
    Trougakos IP; Saridaki A; Panayotou G; Gonos ES
    Mech Ageing Dev; 2006 Jan; 127(1):88-92. PubMed ID: 16213575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that density-dependent growth arrest is a two-stage process in WI-38 cells.
    Owen TA; Carter R; Whitman MM; Soprano DR; Soprano KJ
    J Cell Physiol; 1990 Jan; 142(1):137-48. PubMed ID: 1688860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell cycle-dependent regulation of Ca2+ in young and senescent WI-38 cells.
    Brooks-Frederich KM; Cianciarulo FL; Rittling SR; Cristofalo VJ
    Exp Cell Res; 1993 Apr; 205(2):412-5. PubMed ID: 8482347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of a subtractive cDNA library enriched in cDNAs which expressed at a high level in cultured senescent human fibroblasts.
    Tahara H; Hara E; Tsuyama N; Oda K; Ide T
    Biochem Biophys Res Commun; 1994 Mar; 199(3):1108-12. PubMed ID: 7511891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth-regulated expression of FKBP-59 immunophilin in normal and transformed fibroblastic cells.
    Doucet-Brutin S; Renoir M; Le Gallic L; Vincent S; Marty L; Fort P
    Exp Cell Res; 1995 Sep; 220(1):152-60. PubMed ID: 7664831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneity of dimer excision in young and senescent human dermal fibroblasts.
    Boyle J; Kill IR; Parris CN
    Aging Cell; 2005 Oct; 4(5):247-55. PubMed ID: 16164424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of microarrays to find novel regulators of periodontal ligament fibroblast differentiation.
    Lallier TE; Spencer A
    Cell Tissue Res; 2007 Jan; 327(1):93-109. PubMed ID: 17024420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of proteins differentially expressed in quiescent and proliferatively senescent fibroblast cultures.
    DiPaolo BR; Pignolo RJ; Cristofalo VJ
    Exp Cell Res; 1995 Sep; 220(1):178-85. PubMed ID: 7664833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microarray analysis of E-box binding-related gene expression in young and replicatively senescent human fibroblasts.
    Semov A; Marcotte R; Semova N; Ye X; Wang E
    Anal Biochem; 2002 Mar; 302(1):38-51. PubMed ID: 11846374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.