These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 9597730)

  • 1. In vitro and in vivo mineralization of Nafion membrane used for implantable glucose sensors.
    Mercado RC; Moussy F
    Biosens Bioelectron; 1998 Feb; 13(2):133-45. PubMed ID: 9597730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A ferric chloride pre-treatment to prevent calcification of Nafion membrane used for implantable biosensors.
    Valdes TI; Moussy F
    Biosens Bioelectron; 1999 Jun; 14(6):579-85. PubMed ID: 11459103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of acetaminophen interference in glucose sensors by a composite Nafion membrane: demonstration in rats and man.
    Moatti-Sirat D; Poitout V; Thomé V; Gangnerau MN; Zhang Y; Hu Y; Wilson GS; Lemonnier F; Klein JC; Reach G
    Diabetologia; 1994 Jun; 37(6):610-6. PubMed ID: 7926347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal environment for glucose oxidase in perfluorosulfonated ionomer membranes: improvement of first-generation biosensors.
    Karyakin AA; Kotel'nikova EA; Lukachova LV; Karyakina EE; Wang J
    Anal Chem; 2002 Apr; 74(7):1597-603. PubMed ID: 12033250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A miniaturized Nafion-based glucose sensor: in vitro and in vivo evaluation in dogs.
    Moussy F; Harrison DJ; Rajotte RV
    Int J Artif Organs; 1994 Feb; 17(2):88-94. PubMed ID: 8039946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcification-resistant Nafion/Fe3+ assemblies for implantable biosensors.
    Galeska I; Chattopadhyay D; Moussy F; Papadimitrakopoulos F
    Biomacromolecules; 2000; 1(2):202-7. PubMed ID: 11710101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro and in vivo performance and lifetime of perfluorinated ionomer-coated glucose sensors after high-temperature curing.
    Moussy F; Jakeway S; Harrison DJ; Rajotte RV
    Anal Chem; 1994 Nov; 66(22):3882-8. PubMed ID: 7810896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro and in vivo degradation of glucose oxidase enzyme used for an implantable glucose biosensor.
    Valdes TI; Moussy F
    Diabetes Technol Ther; 2000; 2(3):367-76. PubMed ID: 11467339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and biocompatibility studies of novel humic acids based films as membrane material for an implantable glucose sensor.
    Galeska I; Hickey T; Moussy F; Kreutzer D; Papadimitrakopoulos F
    Biomacromolecules; 2001; 2(4):1249-55. PubMed ID: 11777399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid detection of hyperglycaemia by a subcutaneously-implanted glucose sensor in the rat.
    Ward WK; Wilgus ES; Troupe JE
    Biosens Bioelectron; 1994; 9(6):423-8. PubMed ID: 7917181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical analysis of the performance of glucose sensors with layer-by-layer assembled outer membranes.
    Croce RA; Vaddiraju S; Papadimitrakopoulos F; Jain FC
    Sensors (Basel); 2012 Oct; 12(10):13402-16. PubMed ID: 23202001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein interactions with subcutaneously implanted biosensors.
    Gifford R; Kehoe JJ; Barnes SL; Kornilayev BA; Alterman MA; Wilson GS
    Biomaterials; 2006 Apr; 27(12):2587-98. PubMed ID: 16364432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elimination of the acetaminophen interference in an implantable glucose sensor.
    Zhang Y; Hu Y; Wilson GS; Moatti-Sirat D; Poitout V; Reach G
    Anal Chem; 1994 Apr; 66(7):1183-8. PubMed ID: 8160962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preliminary in vivo biocompatibility studies on perfluorosulphonic acid polymer membranes for biosensor applications.
    Turner RF; Harrison DJ; Rajotte RV
    Biomaterials; 1991 May; 12(4):361-8. PubMed ID: 1832311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement in the long-term stability of an amperometric glucose sensor system by introducing a cellulose membrane of bacterial origin.
    Ammon HP; Ege W; Oppermann M; Gŏpel W; Eisele S
    Anal Chem; 1995 Jan; 67(2):466-71. PubMed ID: 7856888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minimizing tissue-material interaction in microsensor for subcutaneous glucose monitoring.
    Ahmad F; Christenson A; Bainbridge M; Yusof AP; Ab Ghani S
    Biosens Bioelectron; 2007 Mar; 22(8):1625-32. PubMed ID: 16934449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose biosensors based on oxygen electrode with sandwich-type membranes.
    Yang S; Atanasov P; Wilkins E
    Ann Biomed Eng; 1995; 23(6):833-9. PubMed ID: 8572433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An investigation of long-term performance of minimally invasive glucose biosensors.
    Yu B; Ju Y; West L; Moussy Y; Moussy F
    Diabetes Technol Ther; 2007 Jun; 9(3):265-75. PubMed ID: 17561797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of polytetrafluoroethylene (PTFE) membranes to control interference effects in a glucose biosensor.
    Vaidya R; Wilkins E
    Biomed Instrum Technol; 1993; 27(6):486-94. PubMed ID: 8275143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatibility evaluation of sol-gel coatings for subcutaneously implantable glucose sensors.
    Gerritsen M; Kros A; Sprakel V; Lutterman JA; Nolte RJ; Jansen JA
    Biomaterials; 2000 Jan; 21(1):71-8. PubMed ID: 10619680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.