BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 9598203)

  • 1. Generation and the fate of C2, C3, and C4 reactive fragments formed in Maillard model systems of [13C]glucose and [13C]glycine or proline.
    Yaylayan VA; Keyhani A; Huygues-Despointes A
    Adv Exp Med Biol; 1998; 434():237-44. PubMed ID: 9598203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivity of epicatechin in aqueous glycine and glucose maillard reaction models: quenching of C2, C3, and C4 sugar fragments.
    Totlani VM; Peterson DG
    J Agric Food Chem; 2005 May; 53(10):4130-5. PubMed ID: 15884850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of carbohydrate degradation products in L-Alanine/D-[(13)C]glucose model systems.
    Yaylayan VA; Keyhani A
    J Agric Food Chem; 2000 Jun; 48(6):2415-9. PubMed ID: 10888560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of formation of redox-active hydroxylated benzenes and pyrazine in 13C-labeled glycine/D-glucose model systems.
    Haffenden LJ; Yaylayan VA
    J Agric Food Chem; 2005 Dec; 53(25):9742-6. PubMed ID: 16332124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of 2,3-pentanedione and 2,3-butanedione in D-glucose/L-alanine Maillard model systems.
    Yaylayan VA; Keyhani A
    J Agric Food Chem; 1999 Aug; 47(8):3280-4. PubMed ID: 10552645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of hydroxycinnamic acid-maillard reaction products in low-moisture baking model systems.
    Jiang D; Chiaro C; Maddali P; Prabhu KS; Peterson DG
    J Agric Food Chem; 2009 Nov; 57(21):9932-43. PubMed ID: 19817410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fate of the amino acid in glucose-glycine melanoidins investigated by solid-state nuclear magnetic resonance (NMR).
    Fang X; Schmidt-Rohr K
    J Agric Food Chem; 2009 Nov; 57(22):10701-11. PubMed ID: 19919118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of reaction conditions on the origin and yields of acetic acid generated by the maillard reaction.
    Davidek T; Devaud S; Robert F; Blank I
    Ann N Y Acad Sci; 2005 Jun; 1043():73-9. PubMed ID: 16037224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbohydrate and amino acid degradation pathways in L-methionine/D-[13C] glucose model systems.
    Yaylayan VA; Keyhani A
    J Agric Food Chem; 2001 Feb; 49(2):800-3. PubMed ID: 11262032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of epicatechin reactions on the mechanisms of Maillard product formation in low moisture model systems.
    Totlani VM; Peterson DG
    J Agric Food Chem; 2007 Jan; 55(2):414-20. PubMed ID: 17227073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epicatechin carbonyl-trapping reactions in aqueous maillard systems: Identification and structural elucidation.
    Totlani VM; Peterson DG
    J Agric Food Chem; 2006 Sep; 54(19):7311-8. PubMed ID: 16968099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal decomposition of specifically phosphorylated D-glucoses and their role in the control of the Maillard reaction.
    Yaylayan VA; Machiels D; Istasse L
    J Agric Food Chem; 2003 May; 51(11):3358-66. PubMed ID: 12744667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Meat flavor generation from different composition patterns of initial Maillard stage intermediates formed in heated cysteine-xylose-glycine reaction systems.
    Zhao J; Wang T; Xie J; Xiao Q; Du W; Wang Y; Cheng J; Wang S
    Food Chem; 2019 Feb; 274():79-88. PubMed ID: 30373010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Inhibition of Maillard Browning by Different Concentrations of Rosmarinic Acid and Epigallocatechin-3-Gallate in Model, Bakery, and Fruit Systems.
    Favreau-Farhadi N; Pecukonis L; Barrett A
    J Food Sci; 2015 Oct; 80(10):C2140-6. PubMed ID: 26408937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of natural "cooling" compounds formed from glucose and l-proline in dark malt by application of taste dilution analysis.
    Ottinger H; Bareth A; Hofmann T
    J Agric Food Chem; 2001 Mar; 49(3):1336-44. PubMed ID: 11312861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative model studies on the efficiency of precursors in the formation of cooling-active 1-pyrrolidinyl-2-cyclopenten-1-ones and bitter-tasting cyclopenta-[b]azepin-8(1H)-ones.
    Ottinger H; Hofmann T
    J Agric Food Chem; 2002 Aug; 50(18):5156-61. PubMed ID: 12188623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of pyrolytic and aqueous-phase reactions on the mechanism of formation of Maillard products.
    Wnorowski A; Yaylayan VA
    J Agric Food Chem; 2000 Aug; 48(8):3549-54. PubMed ID: 10956148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic study of high-intensity ultrasound-assisted Maillard reaction in a model system of d-glucose and glycine.
    Yu H; Seow YX; Ong PKC; Zhou W
    Food Chem; 2018 Dec; 269():628-637. PubMed ID: 30100481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of model melanoidins by the thermal degradation profile.
    Adams A; Abbaspour Tehrani K; Kersiene M; Venskutonis R; De Kimpe N
    J Agric Food Chem; 2003 Jul; 51(15):4338-43. PubMed ID: 12848507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin and yields of acetic acid in pentose-based Maillard reaction systems.
    Davidek T; Gouézec E; Devaud S; Blank I
    Ann N Y Acad Sci; 2008 Apr; 1126():241-3. PubMed ID: 18448822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.