These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 9598203)

  • 21. Alkyl and other major structures in (13)C-labeled glucose-glycine melanoidins identified by solid-state nuclear magnetic resonance.
    Fang X; Schmidt-Rohr K
    J Agric Food Chem; 2011 Jan; 59(2):481-90. PubMed ID: 21189015
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonvolatile oxidation products of glucose in Maillard model systems: formation of saccharinic and aldonic acids and their corresponding lactones.
    Haffenden LJ; Yaylayan VA
    J Agric Food Chem; 2008 Mar; 56(5):1638-43. PubMed ID: 18251497
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetic modelling of Amadori N-(1-deoxy-D-fructos-1-yl)-glycine degradation pathways. Part I--reaction mechanism.
    Martins SI; Marcelis AT; van Boekel MA
    Carbohydr Res; 2003 Jul; 338(16):1651-63. PubMed ID: 12873421
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Study to elucidate formation pathways of selected roast-smelling odorants upon extrusion cooking.
    Davidek T; Festring D; Dufossé T; Novotny O; Blank I
    J Agric Food Chem; 2013 Oct; 61(43):10215-9. PubMed ID: 23621440
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of glycine on reaction of cysteine-xylose: Insights on initial Maillard stage intermediates to develop meat flavor.
    Cao C; Xie J; Hou L; Zhao J; Chen F; Xiao Q; Zhao M; Fan M
    Food Res Int; 2017 Sep; 99(Pt 1):444-453. PubMed ID: 28784504
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation of 4(5)-methylimidazole and its precursors, α-dicarbonyl compounds, in Maillard model systems.
    Jang HW; Jiang Y; Hengel M; Shibamoto T
    J Agric Food Chem; 2013 Jul; 61(28):6865-72. PubMed ID: 23796138
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Model studies on the pattern of volatiles generated in mixtures of amino acids, lipid-oxidation-derived aldehydes, and glucose.
    Adams A; Kitryté V; Venskutonis R; De Kimpe N
    J Agric Food Chem; 2011 Feb; 59(4):1449-56. PubMed ID: 21265545
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sugar-Conjugated Bis(glycinato)copper(II) Complexes and Their Modulating Influence on the Maillard Reaction.
    Nashalian O; Yaylayan VA
    J Agric Food Chem; 2015 May; 63(17):4353-60. PubMed ID: 25891171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sugar fragmentation in the maillard reaction cascade: isotope labeling studies on the formation of acetic acid by a hydrolytic beta-dicarbonyl cleavage mechanism.
    Davídek T; Devaud S; Robert F; Blank I
    J Agric Food Chem; 2006 Sep; 54(18):6667-76. PubMed ID: 16939325
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of 2-acetylfuran formation between ribose and glucose in the Maillard reaction.
    Wang Y; Ho CT
    J Agric Food Chem; 2008 Dec; 56(24):11997-2001. PubMed ID: 19090713
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formation of 2,5-dimethyl-4-hydroxy-3(2H)-furanone through methylglyoxal: a Maillard reaction intermediate.
    Wang Y; Ho CT
    J Agric Food Chem; 2008 Aug; 56(16):7405-9. PubMed ID: 18593173
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure-reactivity relationships of flavan-3-ols on product generation in aqueous glucose/glycine model systems.
    Noda Y; Peterson DG
    J Agric Food Chem; 2007 May; 55(9):3686-91. PubMed ID: 17394338
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Examining of athermal effects in microwave-induced glucose/glycine reaction and degradation of polysaccharide from Porphyra yezoensis.
    Zhou C; Yu X; Ma H; Liu S; Qin X; Yagoub Ael-G; Owusu J
    Carbohydr Polym; 2013 Aug; 97(1):38-44. PubMed ID: 23769514
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dimerization of azomethine ylides: an alternate route to pyrazine formation in the Maillard reaction.
    Guerra PV; Yaylayan VA
    J Agric Food Chem; 2010 Dec; 58(23):12523-9. PubMed ID: 21047136
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of Deamidation on the Formation of Pyrazines and Proline-Specific Compounds in Maillard Reaction of Asparagine and Proline with Glucose.
    Xiao Q; Huang Q; Ho CT
    J Agric Food Chem; 2023 May; 71(18):7090-7098. PubMed ID: 37126799
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of the reaction products from micro-vial pyrolysis of the mixture glucose/proline and of a tobacco leaf extract:Search for Amadori intermediates.
    Mitsui K; David F; Tienpont B; Sandra K; Ochiai N; Tamura H; Sandra P
    J Chromatogr A; 2015 Nov; 1422():27-33. PubMed ID: 26602543
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Roles of different initial Maillard intermediates and pathways in meat flavor formation for cysteine-xylose-glycine model reaction systems.
    Hou L; Xie J; Zhao J; Zhao M; Fan M; Xiao Q; Liang J; Chen F
    Food Chem; 2017 Oct; 232():135-144. PubMed ID: 28490056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of water content on volatile generation and peptide degradation in the maillard reaction of glycine, diglycine, and triglycine.
    Lu CY; Hao Z; Payne R; Ho CT
    J Agric Food Chem; 2005 Aug; 53(16):6443-7. PubMed ID: 16076132
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of glucose in the maillard browning of maltose and glycine: a radiochemical approach.
    Mundt S; Wedzicha BL
    J Agric Food Chem; 2005 Aug; 53(17):6798-803. PubMed ID: 16104802
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of phloretin and phloridzin on the formation of Maillard reaction products in aqueous models composed of glucose and L-lysine or its derivatives.
    Ma J; Peng X; Ng KM; Che CM; Wang M
    Food Funct; 2012 Feb; 3(2):178-86. PubMed ID: 22159289
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.