These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
44. Mediating specific cell adhesion to low-adhesive diblock copolymers by instant modification with cyclic RGD peptides. Lieb E; Hacker M; Tessmar J; Kunz-Schughart LA; Fiedler J; Dahmen C; Hersel U; Kessler H; Schulz MB; Göpferich A Biomaterials; 2005 May; 26(15):2333-41. PubMed ID: 15585236 [TBL] [Abstract][Full Text] [Related]
45. Chemical modification of surface active poly(ethylene oxide)-poly (propylene oxide) triblock copolymers. Li JT; Carlsson J; Lin JN; Caldwell KD Bioconjug Chem; 1996; 7(5):592-9. PubMed ID: 8889022 [TBL] [Abstract][Full Text] [Related]
46. Surface grafting thermoresponsive PEO-PPO-PEO chains. Malal R; Malal M; Cohn D J Tissue Eng Regen Med; 2011 May; 5(5):394-401. PubMed ID: 20936602 [TBL] [Abstract][Full Text] [Related]
47. Effects of anodized titanium with Arg-Gly-Asp (RGD) peptide immobilized via chemical grafting or physical adsorption on bone cell adhesion and differentiation. Ryu JJ; Park K; Kim HS; Jeong CM; Huh JB Int J Oral Maxillofac Implants; 2013; 28(4):963-72. PubMed ID: 23869353 [TBL] [Abstract][Full Text] [Related]
49. Surface chemical immobilization of bioactive peptides on synthetic polymers for cardiac tissue engineering. Rosellini E; Cristallini C; Guerra GD; Barbani N J Biomater Sci Polym Ed; 2015; 26(9):515-33. PubMed ID: 25787756 [TBL] [Abstract][Full Text] [Related]
50. Human endothelial cell interactions with surface-coupled adhesion peptides on a nonadhesive glass substrate and two polymeric biomaterials. Massia SP; Hubbell JA J Biomed Mater Res; 1991 Feb; 25(2):223-42. PubMed ID: 1829082 [TBL] [Abstract][Full Text] [Related]
51. The effect of RGD density on osteoblast and endothelial cell behavior on RGD-grafted polyethylene terephthalate surfaces. Chollet C; Chanseau C; Remy M; Guignandon A; Bareille R; Labrugère C; Bordenave L; Durrieu MC Biomaterials; 2009 Feb; 30(5):711-20. PubMed ID: 19010529 [TBL] [Abstract][Full Text] [Related]
52. Surface modification with an antithrombin-heparin complex for anticoagulation: studies on a model surface with gold as substrate. Sask KN; Zhitomirsky I; Berry LR; Chan AK; Brash JL Acta Biomater; 2010 Aug; 6(8):2911-9. PubMed ID: 20197127 [TBL] [Abstract][Full Text] [Related]
53. Mesoscopic Simulations of Adsorption and Association of PEO-PPO-PEO Triblock Copolymers on a Hydrophobic Surface: From Mushroom Hemisphere to Rectangle Brush. Song X; Zhao S; Fang S; Ma Y; Duan M Langmuir; 2016 Nov; 32(44):11375-11385. PubMed ID: 27762563 [TBL] [Abstract][Full Text] [Related]
54. Fibrinogen-dependent adherence of macrophages to surfaces coated with poly(ethylene oxide)/poly(propylene oxide) triblock copolymers. O'Connor SM; Patuto SJ; Gehrke SH; Retzinger GS Ann N Y Acad Sci; 1997 Dec; 831():138-44. PubMed ID: 9616708 [TBL] [Abstract][Full Text] [Related]
55. Monocyte/macrophage interactions with base and linear- and star-like PEG-modified PEG-poly(acrylic acid) co-polymers. Wagner VE; Bryers JD J Biomed Mater Res A; 2003 Jul; 66(1):62-78. PubMed ID: 12833432 [TBL] [Abstract][Full Text] [Related]
56. The effect of the addition of a polyglutamate motif to RGD on peptide tethering to hydroxyapatite and the promotion of mesenchymal stem cell adhesion. Sawyer AA; Weeks DM; Kelpke SS; McCracken MS; Bellis SL Biomaterials; 2005 Dec; 26(34):7046-56. PubMed ID: 15964067 [TBL] [Abstract][Full Text] [Related]