These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 9599028)

  • 1. Repassivation of titanium and surface oxide film regenerated in simulated bioliquid.
    Hanawa T; Asami K; Asaoka K
    J Biomed Mater Res; 1998 Jun; 40(4):530-8. PubMed ID: 9599028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of surface chemistries and characteristics of Ti6Al4V on the Ca and P adsorption and ion dissolution in Hank's ethylene diamine tetra-acetic acid solution.
    Chang E; Lee TM
    Biomaterials; 2002 Jul; 23(14):2917-25. PubMed ID: 12069333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amount of metallic ions released from Ti-Ni alloy by abrasion in simulated bioliquids.
    Watarai M; Hanawa T; Moriyama K; Asaoka K
    Biomed Mater Eng; 1999; 9(2):73-9. PubMed ID: 10524290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroxyapatite coating on a titanium metal substrate by a discharging method in modified artificial body fluid.
    Takashima H; Shibata Y; Kim TY; Miyazaki T
    Int J Oral Maxillofac Implants; 2004; 19(1):66-72. PubMed ID: 14982357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface characteristics and bioactivity of oxide film on titanium metal formed by thermal oxidation.
    Park YJ; Song HJ; Kim I; Yang HS
    J Mater Sci Mater Med; 2007 Apr; 18(4):565-75. PubMed ID: 17546415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functionally gradient bonelike hydroxyapatite coating on a titanium metal substrate created by a discharging method in HBSS without organic molecules.
    Shibata Y; Takashima H; Yamamoto H; Miyazaki T
    Int J Oral Maxillofac Implants; 2004; 19(2):177-83. PubMed ID: 15101587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition.
    Sul YT; Johansson CB; Petronis S; Krozer A; Jeong Y; Wennerberg A; Albrektsson T
    Biomaterials; 2002 Jan; 23(2):491-501. PubMed ID: 11761170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Composition of surface oxide film of titanium with culturing murine fibroblasts L929.
    Hiromoto S; Hanawa T; Asami K
    Biomaterials; 2004 Mar; 25(6):979-86. PubMed ID: 14615162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface potential change in bioactive titanium metal during the process of apatite formation in simulated body fluid.
    Kim HM; Himeno T; Kawashita M; Lee JH; Kokubo T; Nakamura T
    J Biomed Mater Res A; 2003 Dec; 67(4):1305-9. PubMed ID: 14624517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrothermal modification of titanium surface in calcium solutions.
    Hamad K; Kon M; Hanawa T; Yokoyama K; Miyamoto Y; Asaoka K
    Biomaterials; 2002 May; 23(10):2265-72. PubMed ID: 11962668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro biocompatibility of Ti-Mg alloys fabricated by direct current magnetron sputtering.
    Hieda J; Niinomi M; Nakai M; Cho K
    Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():1-7. PubMed ID: 26046260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium phosphate formation on titanium by low-voltage electrolytic treatments.
    Tanaka Y; Kobayashi E; Hiromoto S; Asami K; Imai H; Hanawa T
    J Mater Sci Mater Med; 2007 May; 18(5):797-806. PubMed ID: 17143734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical and surface characterization of a nickel-titanium alloy.
    Wever DJ; Veldhuizen AG; de Vries J; Busscher HJ; Uges DR; van Horn JR
    Biomaterials; 1998; 19(7-9):761-9. PubMed ID: 9663751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidized titanium screws coated with calcium ions and their performance in rabbit bone.
    Sul YT; Johansson CB; Albrektsson T
    Int J Oral Maxillofac Implants; 2002; 17(5):625-34. PubMed ID: 12381062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium phosphates formation on CaTiO3 coated titanium.
    Ohtsu N; Sato K; Saito K; Asami K; Hanawa T
    J Mater Sci Mater Med; 2007 Jun; 18(6):1009-16. PubMed ID: 17243006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface treatments of titanium in aqueous solutions containing calcium and phosphate ions.
    Kim DG; Shin MJ; Kim KH; Hanawa T
    Biomed Mater Eng; 1999; 9(2):89-96. PubMed ID: 10524292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium-ion incorporation into titanium surfaces accompanied by electrochemical apatite-deposition.
    Ban S; Kamiya A; Sonoda T
    Dent Mater J; 2002 Dec; 21(4):306-13. PubMed ID: 12608420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Rutherford back-scattering spectrometry and photoelectron spectroscopy of the calcium/titanium interface].
    Demri B; Ferenczi AM; Hage Ali M; Kahn JL; Muster D
    Rev Stomatol Chir Maxillofac; 1997 Nov; 98 Suppl 1():61-5. PubMed ID: 9471700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface analysis of anodic oxide films containing phosphorus on titanium.
    Zhu X; Kim K; Ong JL; Jeong Y
    Int J Oral Maxillofac Implants; 2002; 17(3):331-6. PubMed ID: 12074447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CaTiO(3) coating on titanium for biomaterial application--optimum thickness and tissue response.
    Ohtsu N; Sato K; Yanagawa A; Saito K; Imai Y; Kohgo T; Yokoyama A; Asami K; Hanawa T
    J Biomed Mater Res A; 2007 Aug; 82(2):304-15. PubMed ID: 17279562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.