These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 9599102)

  • 41. The role of PDR13 in tolerance to high copper stress in budding yeast.
    Kim DY; Song WY; Yang YY; Lee Y
    FEBS Lett; 2001 Nov; 508(1):99-102. PubMed ID: 11707276
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Regulation of metallothionein genes by the ACE1 and AMT1 transcription factors.
    Thorvaldsen JL; Sewell AK; McCowen CL; Winge DR
    J Biol Chem; 1993 Jun; 268(17):12512-8. PubMed ID: 8509391
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The CUP2 gene product, regulator of yeast metallothionein expression, is a copper-activated DNA-binding protein.
    Buchman C; Skroch P; Welch J; Fogel S; Karin M
    Mol Cell Biol; 1989 Sep; 9(9):4091-5. PubMed ID: 2674688
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Heat shock element architecture is an important determinant in the temperature and transactivation domain requirements for heat shock transcription factor.
    Santoro N; Johansson N; Thiele DJ
    Mol Cell Biol; 1998 Nov; 18(11):6340-52. PubMed ID: 9774650
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The CUP1 promoter of Saccharomyces cerevisiae is inducible by copper in Pichia pastoris.
    Koller A; Valesco J; Subramani S
    Yeast; 2000 May; 16(7):651-6. PubMed ID: 10806427
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inhibition of copper uptake in yeast reveals the copper transporter Ctr1p as a potential molecular target of saxitoxin.
    Cusick KD; Minkin SC; Dodani SC; Chang CJ; Wilhelm SW; Sayler GS
    Environ Sci Technol; 2012 Mar; 46(5):2959-66. PubMed ID: 22304436
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A single amino acid change in CUP2 alters its mode of DNA binding.
    Buchman C; Skroch P; Dixon W; Tullius TD; Karin M
    Mol Cell Biol; 1990 Sep; 10(9):4778-87. PubMed ID: 2167439
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Fe(II) permease Fet4p functions as a low affinity copper transporter and supports normal copper trafficking in Saccharomyces cerevisiae.
    Hassett R; Dix DR; Eide DJ; Kosman DJ
    Biochem J; 2000 Oct; 351 Pt 2(Pt 2):477-84. PubMed ID: 11023834
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Copper transport activity of yeast Ctr1 is down-regulated via its C terminus in response to excess copper.
    Wu X; Sinani D; Kim H; Lee J
    J Biol Chem; 2009 Feb; 284(7):4112-22. PubMed ID: 19088072
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of a vacuole-associated metalloreductase and its role in Ctr2-mediated intracellular copper mobilization.
    Rees EM; Thiele DJ
    J Biol Chem; 2007 Jul; 282(30):21629-38. PubMed ID: 17553781
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nonsense-mediated mRNA decay of metal-binding activator MAC1 is dependent on copper levels and 3'-UTR length in Saccharomyces cerevisiae.
    Zhang X; Kebaara BW
    Curr Genet; 2024 May; 70(1):5. PubMed ID: 38709348
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mapping of the DNA binding domain of the copper-responsive transcription factor Mac1 from Saccharomyces cerevisiae.
    Jensen LT; Posewitz MC; Srinivasan C; Winge DR
    J Biol Chem; 1998 Sep; 273(37):23805-11. PubMed ID: 9726991
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The AFT1 transcriptional factor is differentially required for expression of high-affinity iron uptake genes in Saccharomyces cerevisiae.
    Casas C; Aldea M; Espinet C; Gallego C; Gil R; Herrero E
    Yeast; 1997 Jun; 13(7):621-37. PubMed ID: 9200812
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The yeast transcription factor Mac1 binds to DNA in a modular fashion.
    Jamison McDaniels CP; Jensen LT; Srinivasan C; Winge DR; Tullius TD
    J Biol Chem; 1999 Sep; 274(38):26962-7. PubMed ID: 10480908
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Production of metallothionein in copper- and cadmium-resistant strains of Saccharomyces cerevisiae.
    Tohoyama H; Inouhe M; Joho M; Murayama T
    J Ind Microbiol; 1995 Feb; 14(2):126-31. PubMed ID: 7766204
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The CUP2 gene product regulates the expression of the CUP1 gene, coding for yeast metallothionein.
    Welch J; Fogel S; Buchman C; Karin M
    EMBO J; 1989 Jan; 8(1):255-60. PubMed ID: 2653812
    [TBL] [Abstract][Full Text] [Related]  

  • 57. ACE2, an activator of yeast metallothionein expression which is homologous to SWI5.
    Butler G; Thiele DJ
    Mol Cell Biol; 1991 Jan; 11(1):476-85. PubMed ID: 1986241
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Oxidative stress induced heat shock factor phosphorylation and HSF-dependent activation of yeast metallothionein gene transcription.
    Liu XD; Thiele DJ
    Genes Dev; 1996 Mar; 10(5):592-603. PubMed ID: 8598289
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular biology of iron acquisition in Saccharomyces cerevisiae.
    Askwith CC; de Silva D; Kaplan J
    Mol Microbiol; 1996 Apr; 20(1):27-34. PubMed ID: 8861201
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synergy of Hir1, Ssn6, and Snf2 global regulators is the functional determinant of a Mac1 transcriptional switch in S. cerevisiae copper homeostasis.
    Voutsina A; Fragiadakis GS; Gkouskou K; Alexandraki D
    Curr Genet; 2019 Jun; 65(3):799-816. PubMed ID: 30689022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.