These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9599147)

  • 21. Coexpression of the CUG-binding protein reduces DM protein kinase expression in COS cells.
    Takahashi N; Sasagawa N; Usuki F; Kino Y; Kawahara H; Sorimachi H; Maeda T; Suzuki K; Ishiura S
    J Biochem; 2001 Nov; 130(5):581-7. PubMed ID: 11686919
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Systemic delivery of a Peptide-linked morpholino oligonucleotide neutralizes mutant RNA toxicity in a mouse model of myotonic dystrophy.
    Leger AJ; Mosquea LM; Clayton NP; Wu IH; Weeden T; Nelson CA; Phillips L; Roberts E; Piepenhagen PA; Cheng SH; Wentworth BM
    Nucleic Acid Ther; 2013 Apr; 23(2):109-17. PubMed ID: 23308382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Does (CUG)n repeat in DMPK mRNA 'paint' chromosome 19 to suppress distant genes to create the diverse phenotype of myotonic dystrophy?: A new hypothesis of long-range cis autosomal inactivation.
    Junghans RP; Ebralidze A; Tiwari B
    Neurogenetics; 2001 Mar; 3(2):59-67. PubMed ID: 11354827
    [No Abstract]   [Full Text] [Related]  

  • 24. Biomedicine. Reconstructing myotonic dystrophy.
    Tapscott SJ; Thornton CA
    Science; 2001 Aug; 293(5531):816-7. PubMed ID: 11486078
    [No Abstract]   [Full Text] [Related]  

  • 25. A flow cytometry-based screen identifies MBNL1 modulators that rescue splicing defects in myotonic dystrophy type I.
    Zhang F; Bodycombe NE; Haskell KM; Sun YL; Wang ET; Morris CA; Jones LH; Wood LD; Pletcher MT
    Hum Mol Genet; 2017 Aug; 26(16):3056-3068. PubMed ID: 28535287
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RNA CUG repeats sequester CUGBP1 and alter protein levels and activity of CUGBP1.
    Timchenko NA; Cai ZJ; Welm AL; Reddy S; Ashizawa T; Timchenko LT
    J Biol Chem; 2001 Mar; 276(11):7820-6. PubMed ID: 11124939
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Celf1 regulates cell cycle and is partially responsible for defective myoblast differentiation in myotonic dystrophy RNA toxicity.
    Peng X; Shen X; Chen X; Liang R; Azares AR; Liu Y
    Biochim Biophys Acta; 2015 Jul; 1852(7):1490-7. PubMed ID: 25887157
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of muscleblind, CUG-BP1 and hnRNP H proteins in DM1-associated aberrant IR splicing.
    Paul S; Dansithong W; Kim D; Rossi J; Webster NJ; Comai L; Reddy S
    EMBO J; 2006 Sep; 25(18):4271-83. PubMed ID: 16946708
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Triplet repeat disorders: discussion of molecular mechanisms.
    Timchenko LT; Caskey CT
    Cell Mol Life Sci; 1999 Aug; 55(11):1432-47. PubMed ID: 10518991
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Colocalization of muscleblind with RNA foci is separable from mis-regulation of alternative splicing in myotonic dystrophy.
    Ho TH; Savkur RS; Poulos MG; Mancini MA; Swanson MS; Cooper TA
    J Cell Sci; 2005 Jul; 118(Pt 13):2923-33. PubMed ID: 15961406
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular and clinical study of two myotonic dystrophy homozygotes.
    Akbas F; Serdaroglu P; Deymeer F; Aysal F; Erginel-Unaltuna N
    J Med Genet; 2001 Nov; 38(11):E40. PubMed ID: 11694554
    [No Abstract]   [Full Text] [Related]  

  • 32. HnRNP H inhibits nuclear export of mRNA containing expanded CUG repeats and a distal branch point sequence.
    Kim DH; Langlois MA; Lee KB; Riggs AD; Puymirat J; Rossi JJ
    Nucleic Acids Res; 2005; 33(12):3866-74. PubMed ID: 16027111
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Decreased expression of myotonin-protein kinase messenger RNA and protein in adult form of myotonic dystrophy.
    Fu YH; Friedman DL; Richards S; Pearlman JA; Gibbs RA; Pizzuti A; Ashizawa T; Perryman MB; Scarlato G; Fenwick RG
    Science; 1993 Apr; 260(5105):235-8. PubMed ID: 8469976
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Molecular genetics of myotonic dystrophy--population genetics of the CTG repeat expansion of the MTPK gene].
    Yamagata H; Miki T; Ogihara T
    Nihon Rinsho; 1997 Dec; 55(12):3205-9. PubMed ID: 9436437
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel proteins with binding specificity for DNA CTG repeats and RNA CUG repeats: implications for myotonic dystrophy.
    Timchenko LT; Timchenko NA; Caskey CT; Roberts R
    Hum Mol Genet; 1996 Jan; 5(1):115-21. PubMed ID: 8789448
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Getting a grip on the myotonic dystrophies.
    Thornton CA; Ashizawa T
    Neurology; 1999 Jan; 52(1):12-3. PubMed ID: 9921841
    [No Abstract]   [Full Text] [Related]  

  • 37. RNA leaching of transcription factors disrupts transcription in myotonic dystrophy.
    Ebralidze A; Wang Y; Petkova V; Ebralidse K; Junghans RP
    Science; 2004 Jan; 303(5656):383-7. PubMed ID: 14657503
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Giant hairpins formed by CUG repeats in myotonic dystrophy messenger RNAs might sterically block RNA export through nuclear pores.
    Koch KS; Leffert HL
    J Theor Biol; 1998 Jun; 192(4):505-14. PubMed ID: 9680723
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gain of RNA function in pathological cases: Focus on myotonic dystrophy.
    Klein AF; Gasnier E; Furling D
    Biochimie; 2011 Nov; 93(11):2006-12. PubMed ID: 21763392
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An expanded CTG trinucleotide repeat causes trans RNA interference: a new hypothesis for the pathogenesis of myotonic dystrophy.
    Sasagawa N; Takahashi N; Suzuki K; Ishiura S
    Biochem Biophys Res Commun; 1999 Oct; 264(1):76-80. PubMed ID: 10527844
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.