These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Peptide ligands of pp60(c-src) SH2 domains: a thermodynamic and structural study. Charifson PS; Shewchuk LM; Rocque W; Hummel CW; Jordan SR; Mohr C; Pacofsky GJ; Peel MR; Rodriguez M; Sternbach DD; Consler TG Biochemistry; 1997 May; 36(21):6283-93. PubMed ID: 9174343 [TBL] [Abstract][Full Text] [Related]
3. Phosphotyrosine-containing dipeptides as high-affinity ligands for the p56lck SH2 domain. Llinaś-Brunet M; Beaulieu PL; Cameron DR; Ferland JM; Gauthier J; Ghiro E; Gillard J; Gorys V; Poirier M; Rancourt J; Wernic D; Betageri R; Cardozo M; Jakes S; Lukas S; Patel U; Proudfoot J; Moss N J Med Chem; 1999 Feb; 42(4):722-9. PubMed ID: 10052978 [TBL] [Abstract][Full Text] [Related]
4. Structure-based design of novel nonpeptide inhibitors of the Src SH2 domain:phosphotyrosine mimetics exploiting multifunctional group replacement chemistry. Sundaramoorthi R; Kawahata N; Yang MG; Shakespeare WC; Metcalf CA; Wang Y; Merry T; Eyermann CJ; Bohacek RS; Narula S; Dalgarno DC; Sawyer TK Biopolymers; 2003; 71(6):717-29. PubMed ID: 14991680 [TBL] [Abstract][Full Text] [Related]
5. Conformationally constrained peptide analogues of pTyr-Glu-Glu-Ile as inhibitors of the Src SH2 domain binding. Nam NH; Ye G; Sun G; Parang K J Med Chem; 2004 Jun; 47(12):3131-41. PubMed ID: 15163193 [TBL] [Abstract][Full Text] [Related]
6. Design of tetrapeptide ligands as inhibitors of the Src SH2 domain. Nam NH; Pitts RL; Sun G; Sardari S; Tiemo A; Xie M; Yan B; Parang K Bioorg Med Chem; 2004 Feb; 12(4):779-87. PubMed ID: 14759738 [TBL] [Abstract][Full Text] [Related]
7. Design, synthesis, and cocrystal structure of a nonpeptide Src SH2 domain ligand. Plummer MS; Holland DR; Shahripour A; Lunney EA; Fergus JH; Marks JS; McConnell P; Mueller WT; Sawyer TK J Med Chem; 1997 Nov; 40(23):3719-25. PubMed ID: 9371236 [TBL] [Abstract][Full Text] [Related]
8. Hydrophobic D-amino acids in the design of peptide ligands for the pp60src SH2 domain. Plummer MS; Lunney EA; Para KS; Prasad JV; Shahripour A; Singh J; Stankovic CJ; Humblet C; Fergus JH; Marks JS; Sawyer TK Drug Des Discov; 1996 Apr; 13(3-4):75-81. PubMed ID: 8874045 [TBL] [Abstract][Full Text] [Related]
9. Requirements for specific binding of low affinity inhibitor fragments to the SH2 domain of (pp60)Src are identical to those for high affinity binding of full length inhibitors. Lange G; Lesuisse D; Deprez P; Schoot B; Loenze P; Bénard D; Marquette JP; Broto P; Sarubbi E; Mandine E J Med Chem; 2003 Nov; 46(24):5184-95. PubMed ID: 14613321 [TBL] [Abstract][Full Text] [Related]
10. Dissection of the energetic coupling across the Src SH2 domain-tyrosyl phosphopeptide interface. Lubman OY; Waksman G J Mol Biol; 2002 Feb; 316(2):291-304. PubMed ID: 11851339 [TBL] [Abstract][Full Text] [Related]
11. Measurement of dissociation constants of inhibitors binding to Src SH2 domain protein by non-covalent electrospray ionization mass spectrometry. Bligh SW; Haley T; Lowe PN J Mol Recognit; 2003; 16(3):139-48. PubMed ID: 12833569 [TBL] [Abstract][Full Text] [Related]
12. Ligands for the tyrosine kinase p56lck SH2 domain: discovery of potent dipeptide derivatives with monocharged, nonhydrolyzable phosphate replacements. Beaulieu PL; Cameron DR; Ferland JM; Gauthier J; Ghiro E; Gillard J; Gorys V; Poirier M; Rancourt J; Wernic D; Llinas-Brunet M; Betageri R; Cardozo M; Hickey ER; Ingraham R; Jakes S; Kabcenell A; Kirrane T; Lukas S; Patel U; Proudfoot J; Sharma R; Tong L; Moss N J Med Chem; 1999 May; 42(10):1757-66. PubMed ID: 10346928 [TBL] [Abstract][Full Text] [Related]
13. Crystal structures of the SH2 domain of Grb2: highlight on the binding of a new high-affinity inhibitor. Nioche P; Liu WQ; Broutin I; Charbonnier F; Latreille MT; Vidal M; Roques B; Garbay C; Ducruix A J Mol Biol; 2002 Feb; 315(5):1167-77. PubMed ID: 11827484 [TBL] [Abstract][Full Text] [Related]
14. Structure-based design and synthesis of high affinity tripeptide ligands of the Grb2-SH2 domain. Furet P; Gay B; Caravatti G; García-Echeverría C; Rahuel J; Schoepfer J; Fretz H J Med Chem; 1998 Aug; 41(18):3442-9. PubMed ID: 9719597 [TBL] [Abstract][Full Text] [Related]
15. Crosstalk between the catalytic and regulatory domains allows bidirectional regulation of Src. Gonfloni S; Weijland A; Kretzschmar J; Superti-Furga G Nat Struct Biol; 2000 Apr; 7(4):281-6. PubMed ID: 10742171 [TBL] [Abstract][Full Text] [Related]
16. The most potent organophosphorus inhibitors of leucine aminopeptidase. Structure-based design, chemistry, and activity. Grembecka J; Mucha A; Cierpicki T; Kafarski P J Med Chem; 2003 Jun; 46(13):2641-55. PubMed ID: 12801228 [TBL] [Abstract][Full Text] [Related]
17. Inhibitors to the Src SH2 domain: a lesson in structure--thermodynamic correlation in drug design. Henriques DA; Ladbury JE Arch Biochem Biophys; 2001 Jun; 390(2):158-68. PubMed ID: 11396918 [TBL] [Abstract][Full Text] [Related]
18. The SH3 and SH2 domains are capable of directing specificity in protein interactions between the non-receptor tyrosine kinases cSrc and cYes. Summy JM; Guappone AC; Sudol M; Flynn DC Oncogene; 2000 Jan; 19(1):155-60. PubMed ID: 10644991 [TBL] [Abstract][Full Text] [Related]
19. Structural basis of Src tyrosine kinase inhibition with a new class of potent and selective trisubstituted purine-based compounds. Dalgarno D; Stehle T; Narula S; Schelling P; van Schravendijk MR; Adams S; Andrade L; Keats J; Ram M; Jin L; Grossman T; MacNeil I; Metcalf C; Shakespeare W; Wang Y; Keenan T; Sundaramoorthi R; Bohacek R; Weigele M; Sawyer T Chem Biol Drug Des; 2006 Jan; 67(1):46-57. PubMed ID: 16492148 [TBL] [Abstract][Full Text] [Related]
20. Leucine 255 of Src couples intramolecular interactions to inhibition of catalysis. Gonfloni S; Frischknecht F; Way M; Superti-Furga G Nat Struct Biol; 1999 Aug; 6(8):760-4. PubMed ID: 10426955 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]