These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 9599326)
1. Laboratory bioassay to compare susceptibilities of Aedes aegypti and Anopheles albimanus to Bacillus thuringiensis var. israelensis as affected by their feeding rates. Mahmood F J Am Mosq Control Assoc; 1998 Mar; 14(1):69-71. PubMed ID: 9599326 [TBL] [Abstract][Full Text] [Related]
2. Host range and selected factors influencing the mosquito larvicidal activity of the PG-14 isolate of Bacillus thuringiensis var. morrisoni. Lacey LA; Lacey CM; Padua LE J Am Mosq Control Assoc; 1988 Mar; 4(1):39-43. PubMed ID: 3193097 [TBL] [Abstract][Full Text] [Related]
3. Efficacy of Czechoslovak and Soviet Bacillus thuringiensis (serotype H-14) formulations against mosquito larvae. Rettich F J Hyg Epidemiol Microbiol Immunol; 1987; 31(1):53-63. PubMed ID: 2883232 [TBL] [Abstract][Full Text] [Related]
4. Efficacy of Arosurf MSF and formulations of Bacillus thuringiensis var. israelensis against Anopheles albimanus: laboratory bioassay. Perich MJ; Rogers JT; Boobar LR J Am Mosq Control Assoc; 1987 Sep; 3(3):485-8. PubMed ID: 3504934 [TBL] [Abstract][Full Text] [Related]
5. Floating bait formulations increase effectiveness of Bacillus thuringiensis var. israelensis against Anopheles larvae. Aly C; Mulla MS; Schnetter W; Xu BZ J Am Mosq Control Assoc; 1987 Dec; 3(4):583-8. PubMed ID: 3504944 [TBL] [Abstract][Full Text] [Related]
6. Factors influencing the activity of Bacillus thuringiensis var. israelensis treatments. Becker N; Zgomba M; Ludwig M; Petric D; Rettich F J Am Mosq Control Assoc; 1992 Sep; 8(3):285-9. PubMed ID: 1357088 [TBL] [Abstract][Full Text] [Related]
7. Toxicity in carcasses of Bacillus thuringiensis var. israelensis-killed Aedes aegypti larvae against scavenging larvae: implications to bioassay. Zaritsky A; Khawaled K J Am Mosq Control Assoc; 1986 Dec; 2(4):555-9. PubMed ID: 3507532 [No Abstract] [Full Text] [Related]
8. Effects of sublethal exposure to Bacillus thuringiensis var. israelensis on larval development and adult size in Aedes aegypti. Hare SG; Nasci RS J Am Mosq Control Assoc; 1986 Sep; 2(3):325-8. PubMed ID: 3507506 [TBL] [Abstract][Full Text] [Related]
9. Raising activity of Bacillus thuringiensis var. israelensis against Anopheles stephensi larvae by encapsulation in Tetrahymena pyriformis (Hymenostomatida:Tetrahymenidae). Manasherob R; Ben-Dov E; Margalit J; Zaritsky A; Barak Z J Am Mosq Control Assoc; 1996 Dec; 12(4):627-31. PubMed ID: 9046467 [TBL] [Abstract][Full Text] [Related]
10. [Susceptibility of Aedes aegypti (L.) strains from Havana to a Bacillus thuringiensis var. israelensis]. Menéndez Díaz Z; Rodríguez Rodríguez J; Gato Armas R; Companioni Ibañez A; Díaz Pérez M; Bruzón Aguila RY Rev Cubana Med Trop; 2012; 64(3):324-9. PubMed ID: 23424808 [TBL] [Abstract][Full Text] [Related]
11. Integrated use of planaria (Dugesia dorotocephala) and Bacillus thuringiensis var. israelensis against Aedes taeniorhynchus: a laboratory bioassay. Perich MJ; Clair PM; Boobar LR J Am Mosq Control Assoc; 1990 Dec; 6(4):667-71. PubMed ID: 2098475 [TBL] [Abstract][Full Text] [Related]
12. Protozoan-enhanced toxicity of Bacillus thuringiensis var. israelensis delta-endotoxin against Aedes aegypti larvae. Manasherob R; Ben-Dov E; Zaritsky A; Barak Z J Invertebr Pathol; 1994 May; 63(3):244-8. PubMed ID: 8021522 [TBL] [Abstract][Full Text] [Related]
13. An isolate of Bacillus circulans toxic to mosquito larvae. Darriet F; Hougard JM J Am Mosq Control Assoc; 2002 Mar; 18(1):65-7. PubMed ID: 11998934 [TBL] [Abstract][Full Text] [Related]
14. Control of aedes aegypti breeding in desert coolers and tires by use of Bacillus thuringiensis var. Israelensis formulation. Batra CP; Mittal PK; Adak T J Am Mosq Control Assoc; 2000 Dec; 16(4):321-3. PubMed ID: 11198918 [TBL] [Abstract][Full Text] [Related]
15. Comparative toxicity of selected larvicidal formulations against Anopheles stephensi Liston and Aedes aegypti Linn. Mittal PK; Adak T; Batra CP J Commun Dis; 2001 Jun; 33(2):116-20. PubMed ID: 12170930 [TBL] [Abstract][Full Text] [Related]
16. Combination of Mesocyclops thermocyclopoides and Bacillus thuringiensis var. israelensis: a better approach for the control of Aedes aegypti larvae in water containers. Chansang UR; Bhumiratana A; Kittayapong P J Vector Ecol; 2004 Dec; 29(2):218-26. PubMed ID: 15707281 [TBL] [Abstract][Full Text] [Related]
17. Residual activity of Bacillus thuringiensis serovars medellin and jegathesan on Culex pipiens and Aedes aegypti larvae. Thiéry I; Fouque F; Gaven B; Lagneau C J Am Mosq Control Assoc; 1999 Sep; 15(3):371-9. PubMed ID: 10480130 [TBL] [Abstract][Full Text] [Related]
18. Laboratory evaluation of Bacillus thuringiensis H-14 against Aedes aegypti larvae in the northeast region of Thailand. Pipitgool V; Maleewong W; Daenseegaew W; Thaiklar K Southeast Asian J Trop Med Public Health; 1991 Sep; 22(3):426-8. PubMed ID: 1818396 [TBL] [Abstract][Full Text] [Related]
19. Effect of low temperature on feeding rate of Aedes stimulans larvae and efficacy of Bacillus thuringiensis var. israelensis (H-14). Walker ED J Am Mosq Control Assoc; 1995 Mar; 11(1):107-10. PubMed ID: 7616175 [TBL] [Abstract][Full Text] [Related]
20. Effect of Novaluron (Rimon 10 EC) on the mosquitoes Anopheles albimanus, Anopheles pseudopunctipennis, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Chiapas, Mexico. Arredondo-Jiménez JI; Valdez-Delgado KM Med Vet Entomol; 2006 Dec; 20(4):377-87. PubMed ID: 17199749 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]