These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 9599703)

  • 1. Nephrotoxicity testing in vitro--what we know and what we need to know.
    Pfaller W; Gstraunthaler G
    Environ Health Perspect; 1998 Apr; 106 Suppl 2(Suppl 2):559-69. PubMed ID: 9599703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in predictive in vitro models of drug-induced nephrotoxicity.
    Soo JY; Jansen J; Masereeuw R; Little MH
    Nat Rev Nephrol; 2018 Jun; 14(6):378-393. PubMed ID: 29626199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nephrotoxicity: a rational approach to target cell injury in vitro in the kidney.
    Bach PH; Kwizera EN
    Xenobiotica; 1988 Jun; 18(6):685-98. PubMed ID: 3048003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional transepithelial transport measurements to detect nephrotoxicity in vitro using the RPTEC/TERT1 cell line.
    Secker PF; Schlichenmaier N; Beilmann M; Deschl U; Dietrich DR
    Arch Toxicol; 2019 Jul; 93(7):1965-1978. PubMed ID: 31076804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liver cell models in in vitro toxicology.
    Guillouzo A
    Environ Health Perspect; 1998 Apr; 106 Suppl 2(Suppl 2):511-32. PubMed ID: 9599700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of chemically induced renal injury: the cascade of degenerative morphological and functional changes that follow the primary nephrotoxic insult and evaluation of these changes by in-vitro methods.
    Bach PH
    Toxicol Lett; 1989 Mar; 46(1-3):237-49. PubMed ID: 2650030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro methods of assessing renal damage.
    Lash LH
    Toxicol Pathol; 1998; 26(1):33-42. PubMed ID: 9502385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell- and biomarker-based assays for predicting nephrotoxicity.
    Huang JX; Blaskovich MA; Cooper MA
    Expert Opin Drug Metab Toxicol; 2014 Dec; 10(12):1621-35. PubMed ID: 25382677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression profiles of genes involved in xenobiotic metabolism and disposition in human renal tissues and renal cell models.
    Van der Hauwaert C; Savary G; Buob D; Leroy X; Aubert S; Flamand V; Hennino MF; Perrais M; Lo-Guidice JM; Broly F; Cauffiez C; Glowacki F
    Toxicol Appl Pharmacol; 2014 Sep; 279(3):409-418. PubMed ID: 25036895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Barriers, nephrotoxicology and chronic testing in vitro.
    Prieto P
    Altern Lab Anim; 2002 Dec; 30 Suppl 2():101-6. PubMed ID: 12513658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nephrotoxicity: Topical issue.
    Gabelova A; Kozics K; Kapka-Skrzypczak L; Kruszewski M; Sramkova M
    Mutat Res Genet Toxicol Environ Mutagen; 2019 Sep; 845():402988. PubMed ID: 31561894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Quantitative Approach to Screen for Nephrotoxic Compounds In Vitro.
    Adler M; Ramm S; Hafner M; Muhlich JL; Gottwald EM; Weber E; Jaklic A; Ajay AK; Svoboda D; Auerbach S; Kelly EJ; Himmelfarb J; Vaidya VS
    J Am Soc Nephrol; 2016 Apr; 27(4):1015-28. PubMed ID: 26260164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of gene chip technology for the characterisation of the regulation of renal transport processes and of nephrotoxicity in rats.
    Fleck C; Sutter L; Appenroth D; Koch B; Meinhold T; Pitack M; Gasser R
    Exp Toxicol Pathol; 2003 Jun; 54(5-6):401-10. PubMed ID: 12877352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Earlier recognition of nephrotoxicity using novel biomarkers of acute kidney injury.
    Waring WS; Moonie A
    Clin Toxicol (Phila); 2011 Oct; 49(8):720-8. PubMed ID: 21970770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Are rats the appropriate experimental model to understand age-related renal drug metabolism and toxicity?
    Trevisan A; Nicolli A; Chiara F
    Expert Opin Drug Metab Toxicol; 2010 Dec; 6(12):1451-9. PubMed ID: 21067426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kidney-based in vitro models for drug-induced toxicity testing.
    Faria J; Ahmed S; Gerritsen KGF; Mihaila SM; Masereeuw R
    Arch Toxicol; 2019 Dec; 93(12):3397-3418. PubMed ID: 31664498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro evaluation of biomarkers for cisplatin-induced nephrotoxicity using HK-2 human kidney epithelial cells.
    Sohn SJ; Kim SY; Kim HS; Chun YJ; Han SY; Kim SH; Moon A
    Toxicol Lett; 2013 Mar; 217(3):235-42. PubMed ID: 23287709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemically induced glomerular injury: a review of basic mechanisms and specific xenobiotics.
    Robertson JL
    Toxicol Pathol; 1998; 26(1):64-72. PubMed ID: 9502389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Species Differences in Renal Development and Associated Developmental Nephrotoxicity.
    Frazier KS
    Birth Defects Res; 2017 Oct; 109(16):1243-1256. PubMed ID: 28766875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.