These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 9600625)

  • 1. Role of mitochondrial Ca2+ regulation in neuronal and glial cell signalling.
    Simpson PB; Russell JT
    Brain Res Brain Res Rev; 1998 Mar; 26(1):72-81. PubMed ID: 9600625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial Ca2+ uptake and release influence metabotropic and ionotropic cytosolic Ca2+ responses in rat oligodendrocyte progenitors.
    Simpson PB; Russell JT
    J Physiol; 1998 Apr; 508 ( Pt 2)(Pt 2):413-26. PubMed ID: 9508806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The local control of cytosolic Ca2+ as a propagator of CNS communication--integration of mitochondrial transport mechanisms and cellular responses.
    Simpson PB
    J Bioenerg Biomembr; 2000 Feb; 32(1):5-13. PubMed ID: 11768762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging of mitochondrial Ca2+ dynamics in astrocytes using cell-specific mitochondria-targeted GCaMP5G/6s: mitochondrial Ca2+ uptake and cytosolic Ca2+ availability via the endoplasmic reticulum store.
    Li H; Wang X; Zhang N; Gottipati MK; Parpura V; Ding S
    Cell Calcium; 2014 Dec; 56(6):457-66. PubMed ID: 25443655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondria buffer non-toxic calcium loads and release calcium through the mitochondrial permeability transition pore and sodium/calcium exchanger in rat basal forebrain neurons.
    Murchison D; Griffith WH
    Brain Res; 2000 Jan; 854(1-2):139-51. PubMed ID: 10784115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium ion-dependent signalling and mitochondrial dysfunction: mitochondrial calcium uptake during hormonal stimulation in intact liver cells and its implication for the mitochondrial permeability transition.
    Hoek JB; Farber JL; Thomas AP; Wang X
    Biochim Biophys Acta; 1995 May; 1271(1):93-102. PubMed ID: 7599232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondria and calcium: from cell signalling to cell death.
    Duchen MR
    J Physiol; 2000 Nov; 529 Pt 1(Pt 1):57-68. PubMed ID: 11080251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity and metabolism-related Ca2+ and mitochondrial dynamics in co-cultured human fetal cortical neurons and astrocytes.
    Fu W; Ruangkittisakul A; MacTavish D; Baker GB; Ballanyi K; Jhamandas JH
    Neuroscience; 2013 Oct; 250():520-35. PubMed ID: 23876319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of mitochondrial calcium uptake rather than efflux impedes calcium release by inositol-1,4,5-trisphosphate-sensitive receptors.
    Chalmers S; McCarron JG
    Cell Calcium; 2009 Aug; 46(2):107-13. PubMed ID: 19577805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial calcium signaling driven by the IP3 receptor.
    Hajnóczky G; Csordás G; Krishnamurthy R; Szalai G
    J Bioenerg Biomembr; 2000 Feb; 32(1):15-25. PubMed ID: 11768758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of calcium signal transmission from sarco-endoplasmic reticulum to the mitochondria.
    Pacher P; Csordás P; Schneider T; Hajnóczky G
    J Physiol; 2000 Dec; 529 Pt 3(Pt 3):553-64. PubMed ID: 11118489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of altered Ca2+ signalling in transformed lymphoblastoid cells from patients with bipolar disorder.
    Kato T; Ishiwata M; Mori K; Washizuka S; Tajima O; Akiyama T; Kato N
    Int J Neuropsychopharmacol; 2003 Dec; 6(4):379-89. PubMed ID: 14604453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inositol trisphosphate receptor mediated spatiotemporal calcium signalling.
    Miyazaki S
    Curr Opin Cell Biol; 1995 Apr; 7(2):190-6. PubMed ID: 7612270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial polarisation status and [Ca2+]i signalling in rat cerebellar granule neurones aged in vitro.
    Xiong J; Camello PJ; Verkhratsky A; Toescu EC
    Neurobiol Aging; 2004 Mar; 25(3):349-59. PubMed ID: 15123341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple modes of calcium-induced calcium release in sympathetic neurons II: a [Ca2+](i)- and location-dependent transition from endoplasmic reticulum Ca accumulation to net Ca release.
    Hongpaisan J; Pivovarova NB; Colegrove SL; Leapman RD; Friel DD; Andrews SB
    J Gen Physiol; 2001 Jul; 118(1):101-12. PubMed ID: 11429447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium signalling in glial cells.
    Verkhratsky A; Kettenmann H
    Trends Neurosci; 1996 Aug; 19(8):346-52. PubMed ID: 8843604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria.
    Csordás G; Thomas AP; Hajnóczky G
    EMBO J; 1999 Jan; 18(1):96-108. PubMed ID: 9878054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization of NMDA receptor-induced mitochondrial calcium accumulation in striatal neurons.
    Peng TI; Jou MJ; Sheu SS; Greenamyre JT
    Exp Neurol; 1998 Jan; 149(1):1-12. PubMed ID: 9454610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aβ and NMDAR activation cause mitochondrial dysfunction involving ER calcium release.
    Ferreira IL; Ferreiro E; Schmidt J; Cardoso JM; Pereira CM; Carvalho AL; Oliveira CR; Rego AC
    Neurobiol Aging; 2015 Feb; 36(2):680-92. PubMed ID: 25442114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-dependent changes in Ca2+ homeostasis in peripheral neurones: implications for changes in function.
    Buchholz JN; Behringer EJ; Pottorf WJ; Pearce WJ; Vanterpool CK
    Aging Cell; 2007 Jun; 6(3):285-96. PubMed ID: 17517039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.