BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 9600761)

  • 1. Effects of gravitational changes on the bone system in vitro and in vivo.
    Vico L; Lafage-Proust MH; Alexandre C
    Bone; 1998 May; 22(5 Suppl):95S-100S. PubMed ID: 9600761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Space flight: a challenge for normal bone homeostasis.
    Carmeliet G; Vico L; Bouillon R
    Crit Rev Eukaryot Gene Expr; 2001; 11(1-3):131-44. PubMed ID: 11693958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of microgravity on bone metabolism in vitro and in vivo.
    Loomer PM
    Crit Rev Oral Biol Med; 2001; 12(3):252-61. PubMed ID: 11497376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modern analysis of bone loss mechanisms in microgravity.
    Oganov VS
    J Gravit Physiol; 2004 Jul; 11(2):P143-6. PubMed ID: 16237819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of microgravity on morphology and gene expression of osteoblasts in vitro.
    Carmeliet G; Bouillon R
    FASEB J; 1999; 13 Suppl():S129-34. PubMed ID: 10352154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical and Trabecular Bone Microstructure Did Not Recover at Weight-Bearing Skeletal Sites and Progressively Deteriorated at Non-Weight-Bearing Sites During the Year Following International Space Station Missions.
    Vico L; van Rietbergen B; Vilayphiou N; Linossier MT; Locrelle H; Normand M; Zouch M; Gerbaix M; Bonnet N; Novikov V; Thomas T; Vassilieva G
    J Bone Miner Res; 2017 Oct; 32(10):2010-2021. PubMed ID: 28574653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microgravity and bone adaptation at the tissue level.
    Vico L; Alexandre C
    J Bone Miner Res; 1992 Dec; 7 Suppl 2():S445-7. PubMed ID: 1485555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation of the proximal femur to skeletal reloading after long-duration spaceflight.
    Lang TF; Leblanc AD; Evans HJ; Lu Y
    J Bone Miner Res; 2006 Aug; 21(8):1224-30. PubMed ID: 16869720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The bearable lightness of being: bones, muscles, and spaceflight.
    Johnson RB
    Anat Rec; 1998 Feb; 253(1):24-7. PubMed ID: 9556022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulated spaceflight produces a rapid and sustained loss of osteoprogenitors and an acute but transitory rise of osteoclast precursors in two genetic strains of mice.
    Shahnazari M; Kurimoto P; Boudignon BM; Orwoll BE; Bikle DD; Halloran BP
    Am J Physiol Endocrinol Metab; 2012 Dec; 303(11):E1354-62. PubMed ID: 23047986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hindlimb unloading of growing rats: a model for predicting skeletal changes during space flight.
    Morey-Holton ER; Globus RK
    Bone; 1998 May; 22(5 Suppl):83S-88S. PubMed ID: 9600759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone histomorphometric comparison of rat tibial metaphysis after 7-day tail suspension vs. 7-day spaceflight.
    Vico L; Novikov VE; Very JM; Alexandre C
    Aviat Space Environ Med; 1991 Jan; 62(1):26-31. PubMed ID: 1996927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of reloading on bone volume, osteoblast number, and osteoprogenitor characteristics: studies in hind limb unloaded rats.
    Basso N; Jia Y; Bellows CG; Heersche JN
    Bone; 2005 Sep; 37(3):370-8. PubMed ID: 16005699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting skeletal adaptation in altered gravity environments.
    Keller TS; Strauss AM
    J Br Interplanet Soc; 1993 Mar; 46(3):87-96. PubMed ID: 11539499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological effects of microgravity on bone cells.
    Arfat Y; Xiao WZ; Iftikhar S; Zhao F; Li DJ; Sun YL; Zhang G; Shang P; Qian AR
    Calcif Tissue Int; 2014 Jun; 94(6):569-79. PubMed ID: 24687524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of orbital spaceflight on bone histomorphometry and messenger ribonucleic acid levels for bone matrix proteins and skeletal signaling peptides in ovariectomized growing rats.
    Cavolina JM; Evans GL; Harris SA; Zhang M; Westerlind KC; Turner RT
    Endocrinology; 1997 Apr; 138(4):1567-76. PubMed ID: 9075717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discordant recovery of bone mass and mechanical properties during prolonged recovery from disuse.
    Shirazi-Fard Y; Kupke JS; Bloomfield SA; Hogan HA
    Bone; 2013 Jan; 52(1):433-43. PubMed ID: 23017660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microgravity and bone cell mechanosensitivity.
    Klein-Nulend J; Bacabac RG; Veldhuijzen JP; Van Loon JJ
    Adv Space Res; 2003; 32(8):1551-9. PubMed ID: 15000126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of 1- and 6-month spaceflight on bone mass and biochemistry in two humans.
    Collet P; Uebelhart D; Vico L; Moro L; Hartmann D; Roth M; Alexandre C
    Bone; 1997 Jun; 20(6):547-51. PubMed ID: 9177869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transduction of mechanical strain in bone.
    Duncan RL
    ASGSB Bull; 1995 Oct; 8(2):49-62. PubMed ID: 11538550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.