BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 9600878)

  • 21. Ultrasonic communication in frogs.
    Feng AS; Narins PM; Xu CH; Lin WY; Yu ZL; Qiu Q; Xu ZM; Shen JX
    Nature; 2006 Mar; 440(7082):333-6. PubMed ID: 16541072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A species-specific frequency filter through specific inhibition, not specific excitation.
    Stumpner A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Apr; 188(3):239-48. PubMed ID: 11976893
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrasound sensitive neurons in the cricket brain.
    Brodfuehrer PD; Hoy RR
    J Comp Physiol A; 1990 Mar; 166(5):651-62. PubMed ID: 2341990
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Directional hearing in a silicon cricket.
    Reeve R; van Schaik A; Jin C; Hamilton T; Torben-Nielsen B; Webb B
    Biosystems; 2007 Feb; 87(2-3):307-13. PubMed ID: 17034935
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlations between structure, topographic arrangement, and spectral sensitivity of sound-sensitive interneurons in crickets.
    Atkins G; Pollack GS
    J Comp Neurol; 1987 Dec; 266(3):398-412. PubMed ID: 3693618
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phonotaxis in flying crickets. II. Physiological mechanisms of two-tone suppression of the high frequency avoidance steering behavior by the calling song.
    Nolen TG; Hoy RR
    J Comp Physiol A; 1986 Oct; 159(4):441-56. PubMed ID: 3783497
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Postsynaptic inhibition mediates high-frequency selectivity in the cricket Teleogryllus oceanicus: implications for flight phonotaxis behavior.
    Nolen TG; Hoy RR
    J Neurosci; 1987 Jul; 7(7):2081-96. PubMed ID: 3612230
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The neuroethology of song cessation in response to gleaning bat calls in two species of katydids, Neoconocephalus ensiger and Amblycorypha oblongifolia.
    ter Hofstede HM; Fullard JH
    J Exp Biol; 2008 Aug; 211(Pt 15):2431-41. PubMed ID: 18626077
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolution of a Communication System by Sensory Exploitation of Startle Behavior.
    Ter Hofstede HM; Schöneich S; Robillard T; Hedwig B
    Curr Biol; 2015 Dec; 25(24):3245-52. PubMed ID: 26687622
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identified auditory neurons in the cricket Gryllus rubens: temporal processing in calling song sensitive units.
    Farris HE; Mason AC; Hoy RR
    Hear Res; 2004 Jul; 193(1-2):121-33. PubMed ID: 15219327
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transient-evoked otoacoustic emissions in a group of professional singers who have normal pure-tone hearing thresholds.
    Hamdan AL; Abouchacra KS; Zeki Al Hazzouri AG; Zaytoun G
    Ear Hear; 2008 Jun; 29(3):360-77. PubMed ID: 18382377
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of irrigation on the efficacy of insecticides for controlling two species of mole crickets (Orthoptera: Gryllotalpidae) on golf courses.
    Xia Y; Brandenburg RL
    J Econ Entomol; 2000 Jun; 93(3):852-7. PubMed ID: 10902341
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temporal pattern recognition based on instantaneous spike rate coding in a simple auditory system.
    Nabatiyan A; Poulet JF; de Polavieja GG; Hedwig B
    J Neurophysiol; 2003 Oct; 90(4):2484-93. PubMed ID: 14534273
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phonotaxis of crickets in flight: attraction of male and female crickets to male calling songs.
    Ulagaraj SM; Walker TJ
    Science; 1973 Dec; 182(4118):1278-9. PubMed ID: 17811322
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential temporal coding of rhythmically diverse acoustic signals by a single interneuron.
    Marsat G; Pollack GS
    J Neurophysiol; 2004 Aug; 92(2):939-48. PubMed ID: 15044517
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbial associates of the southern mole cricket (Scapteriscus borellii) are highly pathogenic.
    Aryal SK; Carter-House D; Stajich JE; Dillman AR
    J Invertebr Pathol; 2017 Nov; 150():54-62. PubMed ID: 28916147
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The mechanics of sound production in Panacanthus pallicornis (Orthoptera: Tettigoniidae: Conocephalinae): the stridulatory motor patterns.
    Montealegre-Z F; Mason AC
    J Exp Biol; 2005 Apr; 208(Pt 7):1219-37. PubMed ID: 15781883
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generation of extreme ultrasonics in rainforest katydids.
    Montealegre-Z F; Morris GK; Mason AC
    J Exp Biol; 2006 Dec; 209(Pt 24):4923-37. PubMed ID: 17142681
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In situ measurement of calling metabolic rate in an Australian mole cricket, Gryllotalpa monanka.
    White CR; Matthews PG; Seymour RS
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Jun; 150(2):217-21. PubMed ID: 17049289
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The complex stridulatory behavior of the cricket Eneoptera guyanensis Chopard (Orthoptera: Grylloidea: Eneopterinae).
    Robillard T; Desutter-Grandcolas L
    J Insect Physiol; 2011 Jun; 57(6):694-703. PubMed ID: 21315079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.