These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 9600896)

  • 1. Electrostatic steering and ionic tethering in enzyme-ligand binding: insights from simulations.
    Wade RC; Gabdoulline RR; Lüdemann SK; Lounnas V
    Proc Natl Acad Sci U S A; 1998 May; 95(11):5942-9. PubMed ID: 9600896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Species dependence of enzyme-substrate encounter rates for triose phosphate isomerases.
    Wade RC; Gabdoulline RR; Luty BA
    Proteins; 1998 Jun; 31(4):406-16. PubMed ID: 9626700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetylcholinesterase: role of the enzyme's charge distribution in steering charged ligands toward the active site.
    Antosiewicz J; Wlodek ST; McCammon JA
    Biopolymers; 1996 Jul; 39(1):85-94. PubMed ID: 8924629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Point charge distributions and electrostatic steering in enzyme/substrate encounter: Brownian dynamics of modified copper/zinc superoxide dismutases.
    Sines JJ; Allison SA; McCammon JA
    Biochemistry; 1990 Oct; 29(40):9403-12. PubMed ID: 2248953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational, pulse-radiolytic, and structural investigations of lysine-136 and its role in the electrostatic triad of human Cu,Zn superoxide dismutase.
    Fisher CL; Cabelli DE; Hallewell RA; Beroza P; Lo TP; Getzoff ED; Tainer JA
    Proteins; 1997 Sep; 29(1):103-12. PubMed ID: 9294870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the electrostatic loop charged residues in Cu,Zn superoxide dismutase.
    Polticelli F; Battistoni A; O'Neill P; Rotilio G; Desideri A
    Protein Sci; 1998 Nov; 7(11):2354-8. PubMed ID: 9828001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular modeling and electrostatic potential calculations on chemically modified Cu,Zn superoxide dismutases from Bos taurus and shark Prionace glauca: role of Lys134 in electrostatically steering the substrate to the active site.
    Polticelli F; Falconi M; O'Neill P; Petruzelli R; Galtieri A; Lania A; Calabrese L; Rotilio G; Desideri A
    Arch Biochem Biophys; 1994 Jul; 312(1):22-30. PubMed ID: 8031131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The association between a negatively charged ligand and the electronegative binding pocket of its receptor.
    Huang HC; Briggs JM
    Biopolymers; 2002 Apr; 63(4):247-60. PubMed ID: 11807752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of arginine 143 in the electrostatics and mechanism of Cu,Zn superoxide dismutase: computational and experimental evaluation by mutational analysis.
    Fisher CL; Cabelli DE; Tainer JA; Hallewell RA; Getzoff ED
    Proteins; 1994 May; 19(1):24-34. PubMed ID: 8066083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brownian dynamics simulations of binding mRNA cap analogues to eIF4E protein.
    Błachut-Okrasińska E; Antosiewicz JM
    J Phys Chem B; 2007 Nov; 111(45):13107-15. PubMed ID: 17949077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved enzyme-substrate electrostatic attraction in prokaryotic Cu,Zn superoxide dismutases.
    Folcarelli S; Battistoni A; Falconi M; O'Neill P; Rotilio G; Desideri A
    Biochem Biophys Res Commun; 1998 Mar; 244(3):908-11. PubMed ID: 9535766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specificity in molecular design: a physical framework for probing the determinants of binding specificity and promiscuity in a biological environment.
    Radhakrishnan ML; Tidor B
    J Phys Chem B; 2007 Nov; 111(47):13419-35. PubMed ID: 17979267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms.
    Lüdemann SK; Lounnas V; Wade RC
    J Mol Biol; 2000 Nov; 303(5):797-811. PubMed ID: 11061976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations of a calmodulin-peptide complex in solution.
    Yang C; Kuczera K
    J Biomol Struct Dyn; 2002 Oct; 20(2):179-97. PubMed ID: 12354070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A modular treatment of molecular traffic through the active site of cholinesterase.
    Botti SA; Felder CE; Lifson S; Sussman JL; Silman I
    Biophys J; 1999 Nov; 77(5):2430-50. PubMed ID: 10545346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatic steering at acetylcholine binding sites.
    Meltzer RH; Thompson E; Soman KV; Song XZ; Ebalunode JO; Wensel TG; Briggs JM; Pedersen SE
    Biophys J; 2006 Aug; 91(4):1302-14. PubMed ID: 16751247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brownian dynamics simulations of enzyme-substrate encounter.
    Wade RC
    Biochem Soc Trans; 1996 Feb; 24(1):254-9. PubMed ID: 8674679
    [No Abstract]   [Full Text] [Related]  

  • 18. Electrostatic recognition between superoxide and copper, zinc superoxide dismutase.
    Getzoff ED; Tainer JA; Weiner PK; Kollman PA; Richardson JS; Richardson DC
    Nature; 1983 Nov 17-23; 306(5940):287-90. PubMed ID: 6646211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate-analog binding and electrostatic surfaces of human manganese superoxide dismutase.
    Azadmanesh J; Trickel SR; Borgstahl GEO
    J Struct Biol; 2017 Jul; 199(1):68-75. PubMed ID: 28461152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exceptionally stable salt bridges in cytochrome P450cam have functional roles.
    Lounnas V; Wade RC
    Biochemistry; 1997 May; 36(18):5402-17. PubMed ID: 9154922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.