These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 9601024)
41. Dissection of binding interactions in the complex between the anti-lysozyme antibody HyHEL-63 and its antigen. Li Y; Urrutia M; Smith-Gill SJ; Mariuzza RA Biochemistry; 2003 Jan; 42(1):11-22. PubMed ID: 12515535 [TBL] [Abstract][Full Text] [Related]
42. Energetic contributions to the initiation of transcription in E. coli. Ramprakash J; Schwarz FP Biophys Chem; 2008 Dec; 138(3):91-8. PubMed ID: 18834656 [TBL] [Abstract][Full Text] [Related]
43. A novel serine protease inhibition motif involving a multi-centered short hydrogen bonding network at the active site. Katz BA; Elrod K; Luong C; Rice MJ; Mackman RL; Sprengeler PA; Spencer J; Hataye J; Janc J; Link J; Litvak J; Rai R; Rice K; Sideris S; Verner E; Young W J Mol Biol; 2001 Apr; 307(5):1451-86. PubMed ID: 11292354 [TBL] [Abstract][Full Text] [Related]
44. Iron-binding process in the amino- and carboxyl-terminal lobes of ovotransferrin: quantitative studies utilizing single Fe3+-binding mutants. Okamoto I; Mizutani K; Hirose M Biochemistry; 2004 Aug; 43(34):11118-25. PubMed ID: 15323571 [TBL] [Abstract][Full Text] [Related]
45. Alanine point-mutations in the reactive region of bovine pancreatic trypsin inhibitor: effects on the kinetics and thermodynamics of binding to beta-trypsin and alpha-chymotrypsin. Castro MJ; Anderson S Biochemistry; 1996 Sep; 35(35):11435-46. PubMed ID: 8784199 [TBL] [Abstract][Full Text] [Related]
46. Mapping the energetics of water-protein and water-ligand interactions with the "natural" HINT forcefield: predictive tools for characterizing the roles of water in biomolecules. Amadasi A; Spyrakis F; Cozzini P; Abraham DJ; Kellogg GE; Mozzarelli A J Mol Biol; 2006 Apr; 358(1):289-309. PubMed ID: 16497327 [TBL] [Abstract][Full Text] [Related]
47. Global effects of the energetics of coenzyme binding: NADPH controls the protein interaction properties of human cytochrome P450 reductase. Grunau A; Paine MJ; Ladbury JE; Gutierrez A Biochemistry; 2006 Feb; 45(5):1421-34. PubMed ID: 16445284 [TBL] [Abstract][Full Text] [Related]
48. A mutational analysis of binding interactions in an antigen-antibody protein-protein complex. Dall'Acqua W; Goldman ER; Lin W; Teng C; Tsuchiya D; Li H; Ysern X; Braden BC; Li Y; Smith-Gill SJ; Mariuzza RA Biochemistry; 1998 Jun; 37(22):7981-91. PubMed ID: 9609690 [TBL] [Abstract][Full Text] [Related]
49. Essentials of biorecognition: the (strept)avidin-biotin system as a model for protein-protein and protein-ligand interaction. Wilchek M; Bayer EA; Livnah O Immunol Lett; 2006 Feb; 103(1):27-32. PubMed ID: 16325268 [TBL] [Abstract][Full Text] [Related]
50. Cancer-related mutations in BRCA1-BRCT cause long-range structural changes in protein-protein binding sites: a molecular dynamics study. Gough CA; Gojobori T; Imanishi T Proteins; 2007 Jan; 66(1):69-86. PubMed ID: 17063491 [TBL] [Abstract][Full Text] [Related]
51. Kinetics of thermal unfolding of phenylalanine hydroxylase variants containing different metal cofactors (FeII, CoII, and ZnII) and their isokinetic relationship. Loaiza A; Armstrong KM; Baker BM; Abu-Omar MM Inorg Chem; 2008 Jun; 47(11):4877-83. PubMed ID: 18433092 [TBL] [Abstract][Full Text] [Related]
52. Structure and energetics of the glucoamylase-isomaltose transition-state complex probed by using modeling and deoxygenated substrates coupled with site-directed mutagenesis. Frandsen TP; Stoffer BB; Palcic MM; Hof S; Svensson B J Mol Biol; 1996 Oct; 263(1):79-89. PubMed ID: 8890914 [TBL] [Abstract][Full Text] [Related]
53. Single-site mutation and secondary structure stability: an isodesmic reaction approach. The case of unnatural amino acid mutagenesis Ala-->Lac. Cieplak AS; Sürmeli NB J Org Chem; 2004 May; 69(10):3250-61. PubMed ID: 15132529 [TBL] [Abstract][Full Text] [Related]
54. Different kinetic pathways of the binding of two biphenyl analogues of colchicine to tubulin. Dumortier C; Gorbunoff MJ; Andreu JM; Engelborghs Y Biochemistry; 1996 Apr; 35(14):4387-95. PubMed ID: 8605187 [TBL] [Abstract][Full Text] [Related]
55. Analysis of binding interactions in an idiotope-antiidiotope protein-protein complex by double mutant cycles. Goldman ER; Dall'Acqua W; Braden BC; Mariuzza RA Biochemistry; 1997 Jan; 36(1):49-56. PubMed ID: 8993317 [TBL] [Abstract][Full Text] [Related]
56. Structure-based engineering of streptavidin monomer with a reduced biotin dissociation rate. Demonte D; Drake EJ; Lim KH; Gulick AM; Park S Proteins; 2013 Sep; 81(9):1621-33. PubMed ID: 23670729 [TBL] [Abstract][Full Text] [Related]
57. Functional loop dynamics of the streptavidin-biotin complex. Song J; Li Y; Ji C; Zhang JZ Sci Rep; 2015 Jan; 5():7906. PubMed ID: 25601277 [TBL] [Abstract][Full Text] [Related]
58. Site-directed mutagenesis studies of the high-affinity streptavidin-biotin complex: contributions of tryptophan residues 79, 108, and 120. Chilkoti A; Tan PH; Stayton PS Proc Natl Acad Sci U S A; 1995 Feb; 92(5):1754-8. PubMed ID: 7878054 [TBL] [Abstract][Full Text] [Related]
59. X-ray crystallographic studies of streptavidin mutants binding to biotin. Freitag S; Le Trong I; Klumb LA; Chu V; Chilkoti A; Stayton PS; Stenkamp RE Biomol Eng; 1999 Dec; 16(1-4):13-9. PubMed ID: 10796980 [TBL] [Abstract][Full Text] [Related]