BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 9601581)

  • 21. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries.
    Prieto D; Simonsen U; Hernández M; García-Sacristán A
    Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of an ATP sensitive potassium channel opener, levcromakalim, on coronary arterial microvessels in the beating canine heart.
    Sato K; Kanatsuka H; Sekiguchi N; Akai K; Wang Y; Sugimura A; Kumagai T; Komaru T; Shirato K
    Cardiovasc Res; 1994 Dec; 28(12):1780-6. PubMed ID: 7867030
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bradykinin induces microvascular preconditioning through the opening of calcium-activated potassium channels.
    Feng J; Sellke ME; Ramlawi B; Boodhwani M; Clements R; Li J; Bianchi C; Sellke FW
    Surgery; 2006 Aug; 140(2):192-7. PubMed ID: 16904969
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pial microvascular responses to transient bilateral common carotid artery occlusion: effects of hypertonic glycerol.
    Lapi D; Marchiafava PL; Colantuoni A
    J Vasc Res; 2008; 45(2):89-102. PubMed ID: 17934320
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of acetylcholine-induced relaxation of rabbit isolated middle cerebral artery: effects of inhibitors of nitric oxide synthesis, Na,K-ATPase, and ATP-sensitive K channels.
    Parsons AA; Schilling L; Wahl M
    J Cereb Blood Flow Metab; 1991 Jul; 11(4):700-4. PubMed ID: 1646828
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relaxation by bradykinin in porcine ciliary artery. Role of nitric oxide and K(+)-channels.
    Zhu P; Bény JL; Flammer J; Lüscher TF; Haefliger IO
    Invest Ophthalmol Vis Sci; 1997 Aug; 38(9):1761-7. PubMed ID: 9286264
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coronary vascular K+ATP channels contribute to the maintenance of myocardial perfusion in dogs with pacing-induced heart failure.
    Yamamoto M; Egashira K; Arimura K; Tada H; Shimokawa H; Takeshita A
    Jpn Circ J; 2000 Sep; 64(9):701-7. PubMed ID: 10981856
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ATP-sensitive K+ channels mediate dilatation of cerebral arterioles during hypoxia.
    Taguchi H; Heistad DD; Kitazono T; Faraci FM
    Circ Res; 1994 May; 74(5):1005-8. PubMed ID: 8156623
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cardiovascular profile of RWJ 29009, a new potassium channel activator, in anesthetized and conscious dogs.
    Damiano BP; Giardino EC; Haertlein BJ; Stump GL; Mitchell JA; Falotico R
    J Cardiovasc Pharmacol; 1994 Feb; 23(2):300-10. PubMed ID: 7511761
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Global ischemia impairs ATP-sensitive K+ channel function in cerebral arterioles in piglets.
    Bari F; Louis TM; Meng W; Busija DW
    Stroke; 1996 Oct; 27(10):1874-80; discussion 1880-1. PubMed ID: 8841347
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Superiority of hyperpolarizing to depolarizing cardioplegia in protection of coronary endothelial function.
    He GW; Yang CQ
    J Thorac Cardiovasc Surg; 1997 Oct; 114(4):643-50. PubMed ID: 9338651
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A xanthine-based KMUP-1 with cyclic GMP enhancing and K(+) channels opening activities in rat aortic smooth muscle.
    Wu BN; Lin RJ; Lin CY; Shen KP; Chiang LC; Chen IJ
    Br J Pharmacol; 2001 Sep; 134(2):265-74. PubMed ID: 11564644
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Responses of cerebral arterioles to N-methyl-D-aspartate and activation of ATP-sensitive potassium channels in old rats.
    Faraci FM; Heistad DD
    Brain Res; 1994 Aug; 654(2):349-51. PubMed ID: 7987685
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impaired hypoxic coronary vasodilation and ATP-sensitive potassium channel function: a manifestation of diabetic microangiopathy in humans?
    Weintraub NL
    Circ Res; 2003 Feb; 92(2):127-9. PubMed ID: 12574137
    [No Abstract]   [Full Text] [Related]  

  • 35. Inhibitory effect of 4-aminopyridine on responses of the basilar artery to nitric oxide.
    Sobey CG; Faraci FM
    Br J Pharmacol; 1999 Mar; 126(6):1437-43. PubMed ID: 10217538
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Altered control of vascular tone by adenosine triphosphate-sensitive potassium channels in rats with cirrhosis.
    Moreau R; Komeichi H; Kirstetter P; Ohsuga M; Cailmail S; Lebrec D
    Gastroenterology; 1994 Apr; 106(4):1016-23. PubMed ID: 8143968
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of ATP-sensitive potassium channels in coronary microvascular autoregulatory responses.
    Komaru T; Lamping KG; Eastham CL; Dellsperger KC
    Circ Res; 1991 Oct; 69(4):1146-51. PubMed ID: 1934341
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prolongation of rat heart allograft survival with K(+)ATP-dependent channel modulators.
    Rheaume D; Dumont L; Peng J; Xu D; Qi S; Liu D; Chen H
    Microsurgery; 1999; 19(7):314-7. PubMed ID: 10586194
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relaxation of the carotid artery to hypoxia is impaired in Watanabe heritable hyperlipidemic rabbits.
    Taguchi H; Faraci FM; Kitazono T; Heistad DD
    Arterioscler Thromb Vasc Biol; 1995 Oct; 15(10):1641-5. PubMed ID: 7583538
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The myocardial lesions produced by the potassium channel opener aprikalim in monkeys and rats are prevented by blockade of cardiac beta-adrenoceptors.
    Belin V; Hodge T; Picaut P; Jordan R; Algate C; Gosselin S; Nohynek G; Cavero I
    Fundam Appl Toxicol; 1996 Jun; 31(2):259-67. PubMed ID: 8789792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.