These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 9601633)

  • 21. Loss of temporal sensitivity in dorsal lateral geniculate nucleus and area 18 of the cat following monocular deprivation.
    Jones KR; Berkley MA
    J Neurophysiol; 1983 Jan; 49(1):254-68. PubMed ID: 6827299
    [No Abstract]   [Full Text] [Related]  

  • 22. Parallel pathways in the mammalian visual system.
    Shapley R
    Ann N Y Acad Sci; 1982; 388():11-20. PubMed ID: 6953863
    [No Abstract]   [Full Text] [Related]  

  • 23. [Studies on the photic information processing in the visual pathway (author's transl)].
    Nakatsuka K
    Nippon Ganka Gakkai Zasshi; 1977 Sep; 81(9):1351-9. PubMed ID: 605865
    [No Abstract]   [Full Text] [Related]  

  • 24. Receptive-field transformations between LGN neurons and S-cells of cat-striate cortex.
    Bullier J; Mustari MJ; Henry GH
    J Neurophysiol; 1982 Mar; 47(3):417-38. PubMed ID: 7069451
    [No Abstract]   [Full Text] [Related]  

  • 25. Influence of the cortico-geniculate pathway on response properties of cat lateral geniculate neurons.
    Geisert EE; Langsetmo A; Spear PD
    Brain Res; 1981 Mar; 208(2):409-15. PubMed ID: 6260290
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence for spatial structure in the cortical input to the monkey lateral geniculate nucleus.
    Marrocco RT; McClurkin JW
    Exp Brain Res; 1985; 59(1):50-6. PubMed ID: 4018198
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes of visual evoked responses to geniculate stimuli during light conditioning in the cat.
    Cherubini E; Bilancia G; Ricci GF
    Brain Res; 1976 Apr; 105(3):578-82. PubMed ID: 1260467
    [No Abstract]   [Full Text] [Related]  

  • 28. Distribution and temporal response characteristics of evoked potentials in the visually deprived cat.
    Jones KR; Berkley MA
    Brain Res; 1977 Jul; 130(3):572-8. PubMed ID: 890454
    [No Abstract]   [Full Text] [Related]  

  • 29. Spatial frequency analysis in the visual system.
    Shapley R; Lennie P
    Annu Rev Neurosci; 1985; 8():547-83. PubMed ID: 3920946
    [No Abstract]   [Full Text] [Related]  

  • 30. [Automated system for testing receptive fields of visual system neurons in animals].
    Danilov IuP; Novikov GI; Solnushkin SD; Chikhman VN
    Fiziol Zh SSSR Im I M Sechenova; 1987 Apr; 73(4):551-5. PubMed ID: 3609384
    [No Abstract]   [Full Text] [Related]  

  • 31. Sequential analysis of the visual evoked potential system in man: nonlinear analysis of a sandwich system.
    Spekreijse H; Reits D
    Ann N Y Acad Sci; 1982; 388():72-97. PubMed ID: 6953907
    [No Abstract]   [Full Text] [Related]  

  • 32. Electrophysiological and morphological correlates in the development of visual cortical circuitry in infant kittens.
    Komatsu Y; Fujii K; Nakajima S; Umetani K; Toyama K
    Brain Res; 1985 Oct; 354(2):305-9. PubMed ID: 2996718
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physiological aspects of visual perception. I. Functional aspects of visual cortex.
    Denny-Brown D; Chambers RA
    Arch Neurol; 1976 Apr; 33(4):219-27. PubMed ID: 816338
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of visual afferent activity in the development of ocular dominance columns.
    Stryker MP
    Neurosci Res Program Bull; 1982 Apr; 20(4):540-9. PubMed ID: 6811966
    [No Abstract]   [Full Text] [Related]  

  • 35. [Differences in the dynamics of the visual receptive field and its summation zones in the cat].
    Volgushev MA; Shevelev IA; Dets K; Sharaev GA; Verderevskaia NN
    Neirofiziologiia; 1983; 15(5):466-72. PubMed ID: 6646285
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Maturation, plasticity and degeneration in the visual system. Workshop sponsored by the Commission of the European Communities, Schloss Reisensburg, German Federal Republic, October 3-7, 1977.
    Arch Ital Biol; 1978 Sep; 116(3-4):231-484. PubMed ID: 749705
    [No Abstract]   [Full Text] [Related]  

  • 37. A physiological explanation of infant's early visual development.
    Maurer D; Lewis TL
    Can J Psychol; 1979 Dec; 33(4):232-52. PubMed ID: 546491
    [No Abstract]   [Full Text] [Related]  

  • 38. Control of thalamic transmission by corticofugal and ascending reticular pathways in the visual system.
    Singer W
    Physiol Rev; 1977 Jul; 57(3):386-420. PubMed ID: 196301
    [No Abstract]   [Full Text] [Related]  

  • 39. Operant conditioning of cortical visual evoked potentials in the curarized rat and control of simultaneous subcortical activity.
    Roger M; Galand G
    Exp Neurol; 1980 Dec; 70(3):586-97. PubMed ID: 7439296
    [No Abstract]   [Full Text] [Related]  

  • 40. Lagged cells.
    Saul AB
    Neurosignals; 2008; 16(2-3):209-25. PubMed ID: 18253059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.