These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 9602107)

  • 1. Magnetic studies of the trinuclear center in laccase and ascorbate oxidase approached by EPR spectroscopy and magnetic susceptibility measurements.
    Huang HW; Sakurai T; Monjushiro H; Takeda S
    Biochim Biophys Acta; 1998 Apr; 1384(1):160-70. PubMed ID: 9602107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EPR spectra of type 3 copper centers in Rhus vernicifera laccase and Cucumis sativus ascorbate oxidase.
    Sakurai T; Takahashi J
    Biochim Biophys Acta; 1995 Apr; 1248(2):143-8. PubMed ID: 7748896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Azide binding to the trinuclear copper center in laccase and ascorbate oxidase.
    Gromov I; Marchesini A; Farver O; Pecht I; Goldfarb D
    Eur J Biochem; 1999 Dec; 266(3):820-30. PubMed ID: 10583375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Room temperature ESR spectra of Rhus vernicifera laccase and derivatives.
    Sakurai T; Takahashi J
    Biochem Biophys Res Commun; 1995 Oct; 215(1):235-40. PubMed ID: 7575597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of Cu-N3- stretching and N3- asymmetric stretching bands for mono-azide adduct of Rhus vernicifera laccase.
    Hirota S; Matsumoto H; Huang HW; Sakurai T; Kitagawa T; Yamauchi O
    Biochem Biophys Res Commun; 1998 Feb; 243(2):435-7. PubMed ID: 9480826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH and microwave power effects on the electron spin resonance spectra of Rhus vernicifera laccase and Cucumis sativus ascorbate oxidase.
    Sakurai T; Suzuki S; Chikira M
    J Biochem; 1990 Jan; 107(1):37-42. PubMed ID: 2158983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EPR studies of ligand binding to the type 2/type 3 cluster in tree laccase.
    Peyratout CS; Severns JC; Holm SR; McMillin DR
    Arch Biochem Biophys; 1994 Nov; 314(2):405-11. PubMed ID: 7979382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel mixed valence form of Rhus vernicifera laccase and its reaction with dioxygen to give a peroxide intermediate bound to the trinuclear center.
    Zoppellaro G; Sakurai T; Huang H
    J Biochem; 2001 Jun; 129(6):949-53. PubMed ID: 11388911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new copper(II) electron paramagnetic resonance signal in two laccases and in cytochrome c oxidase.
    Reinhammar B; Malkin R; Jensen P; Karlsson B; Andréasson LE; Aasa R; Vänngård T; Malmström BG
    J Biol Chem; 1980 Jun; 255(11):5000-3. PubMed ID: 6246091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase.
    Sakurai T; Kataoka K
    Chem Rec; 2007; 7(4):220-9. PubMed ID: 17663447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic and kinetic studies on the oxygen-centered radical formed during the four-electron reduction process of dioxygen by Rhus vernicifera laccase.
    Huang H; Zoppellaro G; Sakurai T
    J Biol Chem; 1999 Nov; 274(46):32718-24. PubMed ID: 10551829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability of Japanese-lacquer-tree (Rhus vernicifera) laccase to thermal and chemical denaturation: comparison with ascorbate oxidase.
    Agostinelli E; Cervoni L; Giartosio A; Morpurgo L
    Biochem J; 1995 Mar; 306 ( Pt 3)(Pt 3):697-702. PubMed ID: 7702562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of reduced cucumber ascorbate oxidase.
    Sakurai T; Sawada S; Suzuki S; Nakahara A
    Biochem Biophys Res Commun; 1985 Sep; 131(2):647-52. PubMed ID: 2996519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic reactions of Rhus vernicifera laccase and its type-2 copper-depleted derivatives with hexacyanoferrate(II).
    Sakurai T
    Biochem J; 1992 Jun; 284 ( Pt 3)(Pt 3):681-5. PubMed ID: 1320374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-temperature magnetic circular dichroism studies of native laccase: spectroscopic evidence for exogenous ligand bridging at a trinuclear copper active site.
    Allendorf MD; Spira DJ; Solomon EI
    Proc Natl Acad Sci U S A; 1985 May; 82(10):3063-7. PubMed ID: 2987909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper transfer from Rhus vernicifera laccase.
    Meadows KA; Morie-Bebel MM; McMillin DR
    J Inorg Biochem; 1991 Mar; 41(4):253-60. PubMed ID: 1647440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulsed electron paramagnetic resonance studies of types I and II coper of Rhus vernicifera laccase and porcine ceruloplasmin.
    Mondoví B; Graziani MT; Mims WB; Oltzik R; Peisach J
    Biochemistry; 1977 Sep; 16(19):4198-202. PubMed ID: 197989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative turnover increases the rate constant and extent of intramolecular electron transfer in the multicopper enzymes, ascorbate oxidase and laccase.
    Tollin G; Meyer TE; Cusanovich MA; Curir P; Marchesini A
    Biochim Biophys Acta; 1993 Dec; 1183(2):309-14. PubMed ID: 8268195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An investigation on reduction process of cucumber ascorbate oxidase.
    Sakurai T; Sawada S; Suzuki S; Nakahara A
    Biochem Biophys Res Commun; 1986 Mar; 135(2):644-8. PubMed ID: 3008730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic susceptibility of laccases and ceruloplasmin.
    Petersson L; Angström J; Ehrenberg A
    Biochim Biophys Acta; 1978 Oct; 526(2):311-7. PubMed ID: 214124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.