These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 9603018)

  • 1. Design of a closed system water tunnel for lamprey swimming analysis.
    McIntosh CM; Knapp CF; Jung R
    Biomed Sci Instrum; 1997; 34():87-92. PubMed ID: 9603018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between muscle activation, body curvature and the water in the swimming lamprey.
    Williams TL; Bowtell G; Carling JC; Sigvardt KA; Curtin NA
    Symp Soc Exp Biol; 1995; 49():49-59. PubMed ID: 8571235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pattern of motor coordination underlying backward swimming in the lamprey.
    Islam SS; Zelenin PV; Orlovsky GN; Grillner S; Deliagina TG
    J Neurophysiol; 2006 Jul; 96(1):451-60. PubMed ID: 16772518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modifications of locomotor pattern underlying escape behavior in the lamprey.
    Islam SS; Zelenin PV
    J Neurophysiol; 2008 Jan; 99(1):297-307. PubMed ID: 18003880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity of individual reticulospinal neurons during different forms of locomotion in the lamprey.
    Zelenin PV
    Eur J Neurosci; 2005 Nov; 22(9):2271-82. PubMed ID: 16262665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gender and cognitive aspects of neonatal and juvenile neuromuscular locomotor development of F1 hybrid mice in swim tests.
    Adencreutz M; Hau J
    Lab Anim; 2008 Jan; 42(1):26-33. PubMed ID: 18348764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forebrain dopamine depletion impairs motor behavior in lamprey.
    Thompson RH; Ménard A; Pombal M; Grillner S
    Eur J Neurosci; 2008 Mar; 27(6):1452-60. PubMed ID: 18336565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Swimming behaviour and post-swimming activity in Vitamin D receptor knockout mice.
    Burne TH; Johnston AN; McGrath JJ; Mackay-Sim A
    Brain Res Bull; 2006 Mar; 69(1):74-8. PubMed ID: 16464687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses of reticulospinal neurons in the lamprey to lateral turns.
    Karayannidou A; Zelenin PV; Orlovsky GN; Deliagina TG
    J Neurophysiol; 2007 Jan; 97(1):512-21. PubMed ID: 17079339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repeated exposure to corticosterone increases depression-like behavior in two different versions of the forced swim test without altering nonspecific locomotor activity or muscle strength.
    Marks W; Fournier NM; Kalynchuk LE
    Physiol Behav; 2009 Aug; 98(1-2):67-72. PubMed ID: 19393673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental quantification of the swimming performance and behaviour of spawning run river lamprey Lampetra fluviatilis and European eel Anguilla anguilla.
    Russon IJ; Kemp PS
    J Fish Biol; 2011 Jun; 78(7):1965-75. PubMed ID: 21651544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies of neonatal and juvenile neuromuscular locomotor development of C57BL/6/Bkl, 129SvEv/Bkl and F1 hybrid mice in swim tests.
    Adencreutz M; Hau J
    In Vivo; 2004; 18(6):733-7. PubMed ID: 15646814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robustness of connectionist swimming controllers against random variation in neural connections.
    Or J
    Neural Comput; 2007 Jun; 19(6):1568-88. PubMed ID: 17444760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Movements and muscle activity initiated by brain locomotor areas in semi-intact preparations from larval lamprey.
    Jackson AW; Pino FA; Wiebe ED; McClellan AD
    J Neurophysiol; 2007 May; 97(5):3229-41. PubMed ID: 17314244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive variations of undulatory behaviors in larval lamprey: comparison of swimming and burrowing.
    Paggett KC; Gupta V; McClellan AD
    Exp Brain Res; 1998 Mar; 119(2):213-23. PubMed ID: 9535571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tectal control of locomotion, steering, and eye movements in lamprey.
    Saitoh K; Ménard A; Grillner S
    J Neurophysiol; 2007 Apr; 97(4):3093-108. PubMed ID: 17303814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Initiation of locomotion in lampreys.
    Dubuc R; Brocard F; Antri M; Fénelon K; Gariépy JF; Smetana R; Ménard A; Le Ray D; Viana Di Prisco G; Pearlstein E; Sirota MG; Derjean D; St-Pierre M; Zielinski B; Auclair F; Veilleux D
    Brain Res Rev; 2008 Jan; 57(1):172-82. PubMed ID: 17916380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in electrophysiological properties of lamprey spinal motoneurons during fictive swimming.
    Martin MM
    J Neurophysiol; 2002 Nov; 88(5):2463-76. PubMed ID: 12424286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vestibular compensation in lampreys: restoration of symmetry in reticulospinal commands.
    Pavlova EL; Popova LB; Orlovsky GN; Deliagina TG
    J Exp Biol; 2004 Dec; 207(Pt 26):4595-603. PubMed ID: 15579555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Body stiffness and damping depend sensitively on the timing of muscle activation in lampreys.
    Tytell ED; Carr JA; Danos N; Wagenbach C; Sullivan CM; Kiemel T; Cowan NJ; Ankarali MM
    Integr Comp Biol; 2018 Nov; 58(5):860-873. PubMed ID: 29873726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.