These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 9603022)

  • 1. Increased variability in motor output with brain-spinal cord interaction.
    Jung R; Jung J; Losch B
    Biomed Sci Instrum; 1997; 34():107-12. PubMed ID: 9603022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of the reticulospinal system on locomotion in lamprey.
    Wannier T; Deliagina TG; Orlovsky GN; Grillner S
    J Neurophysiol; 1998 Jul; 80(1):103-12. PubMed ID: 9658032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and slow locomotor burst generation in the hemispinal cord of the lamprey.
    Cangiano L; Grillner S
    J Neurophysiol; 2003 Jun; 89(6):2931-42. PubMed ID: 12611971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extent and role of multisegmental coupling in the Lamprey spinal locomotor pattern generator.
    Miller WL; Sigvardt KA
    J Neurophysiol; 2000 Jan; 83(1):465-76. PubMed ID: 10634888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane potential oscillations in reticulospinal and spinobulbar neurons during locomotor activity.
    Einum JF; Buchanan JT
    J Neurophysiol; 2005 Jul; 94(1):273-81. PubMed ID: 15744013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reticulospinal neurons receive direct spinobulbar inputs during locomotor activity in lamprey.
    Einum JF; Buchanan JT
    J Neurophysiol; 2004 Sep; 92(3):1384-90. PubMed ID: 15331645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of left-right reciprocal coupling in the spinal cord of larval lamprey abolishes brain-initiated locomotor activity.
    Jackson AW; Horinek DF; Boyd MR; McClellan AD
    J Neurophysiol; 2005 Sep; 94(3):2031-44. PubMed ID: 16000521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variability analyses suggest that supraspino-spinal interactions provide dynamic stability in motor control.
    Wang H; Jung R
    Brain Res; 2002 Mar; 930(1-2):83-100. PubMed ID: 11879799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initiation of locomotion in lampreys.
    Dubuc R; Brocard F; Antri M; Fénelon K; Gariépy JF; Smetana R; Ménard A; Le Ray D; Viana Di Prisco G; Pearlstein E; Sirota MG; Derjean D; St-Pierre M; Zielinski B; Auclair F; Veilleux D
    Brain Res Rev; 2008 Jan; 57(1):172-82. PubMed ID: 17916380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The spino-reticulo-spinal loop can slow down the NMDA-activated spinal locomotor network in lamprey.
    Vinay L; Grillner S
    Neuroreport; 1993 Jun; 4(6):609-12. PubMed ID: 8394151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The development of the lamprey pattern generator for locomotion.
    Cohen AH; Dobrov TA; Li G; Kiemel T; Baker MT
    J Neurobiol; 1990 Oct; 21(7):958-69. PubMed ID: 2258729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative investigation of calcium signals for locomotor pattern generation in the lamprey spinal cord.
    Viana di Prisco G; Alford S
    J Neurophysiol; 2004 Sep; 92(3):1796-806. PubMed ID: 15140901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endogenous tachykinin release contributes to the locomotor activity in lamprey.
    Pérez CT; Hill RH; Grillner S
    J Neurophysiol; 2007 May; 97(5):3331-9. PubMed ID: 17360825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rostral versus caudal differences in mechanical entrainment of the lamprey central pattern generator for locomotion.
    Tytell ED; Cohen AH
    J Neurophysiol; 2008 May; 99(5):2408-19. PubMed ID: 18256165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholinergic modulation of the locomotor network in the lamprey spinal cord.
    Quinlan KA; Placas PG; Buchanan JT
    J Neurophysiol; 2004 Sep; 92(3):1536-48. PubMed ID: 15152024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase-dependent effects of spinal cord stimulation on locomotor activity.
    Vogelstein RJ; Etienne-Cummings R; Thakor NV; Cohen AH
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):257-65. PubMed ID: 17009484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The activity of spinal commissural interneurons during fictive locomotion in the lamprey.
    Biró Z; Hill RH; Grillner S
    J Neurophysiol; 2008 Aug; 100(2):716-22. PubMed ID: 18509075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct roles of glycinergic and GABAergic inhibition in coordinating locomotor-like rhythms in the neonatal mouse spinal cord.
    Hinckley C; Seebach B; Ziskind-Conhaim L
    Neuroscience; 2005; 131(3):745-58. PubMed ID: 15730878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Serotonin refines the locomotor-related alternations in the in vitro neonatal rat spinal cord.
    Pearlstein E; Ben Mabrouk F; Pflieger JF; Vinay L
    Eur J Neurosci; 2005 Mar; 21(5):1338-46. PubMed ID: 15813943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low micromolar concentrations of 4-aminopyridine facilitate fictive locomotion expressed by the rat spinal cord in vitro.
    Taccola G; Nistri A
    Neuroscience; 2004; 126(2):511-20. PubMed ID: 15207368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.