These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 9603042)
1. An elbow joint movement control model with visual feedback. Xiao S; Li X Biomed Sci Instrum; 1997; 34():218-23. PubMed ID: 9603042 [TBL] [Abstract][Full Text] [Related]
2. Reflex regulation of antagonist muscles for control of joint equilibrium position. Lan N; Li Y; Sun Y; Yang FS IEEE Trans Neural Syst Rehabil Eng; 2005 Mar; 13(1):60-71. PubMed ID: 15813407 [TBL] [Abstract][Full Text] [Related]
3. A neuromusculoskeletal model to simulate the constant angular velocity elbow extension test of spasticity. Koo TK; Mak AF Med Eng Phys; 2006 Jan; 28(1):60-9. PubMed ID: 15908257 [TBL] [Abstract][Full Text] [Related]
4. Antagonist muscle activation preceding rapid flexion movements of the elbow joint in human subjects. Heinzel A; Ross HG; Cleveland S Neurosci Lett; 2008 Mar; 434(2):206-11. PubMed ID: 18313851 [TBL] [Abstract][Full Text] [Related]
5. Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow. Koo TK; Mak AF J Electromyogr Kinesiol; 2005 Feb; 15(1):12-26. PubMed ID: 15642650 [TBL] [Abstract][Full Text] [Related]
6. Modeling investigation of learning a fast elbow flexion in the horizontal plane--prediction of muscle forces and motor units action. Raikova RT; Gabriel DA; Aladjov HTs Comput Methods Biomech Biomed Engin; 2006 Aug; 9(4):211-9. PubMed ID: 17132529 [TBL] [Abstract][Full Text] [Related]
7. Muscular torque generation during imposed joint rotation: torque-angle relationships when subjects' only goal is to make a constant effort. Burgess PR; Jones LF; Buhler CF; Dewald JP; Zhang LQ; Rymer WZ Somatosens Mot Res; 2002; 19(4):327-40. PubMed ID: 12590834 [TBL] [Abstract][Full Text] [Related]
8. Comparison between two muscle models under dynamic conditions. Raikova RT; Aladjov HTs Comput Biol Med; 2005 Jun; 35(5):373-87. PubMed ID: 15767114 [TBL] [Abstract][Full Text] [Related]
9. Sloped muscle excitation waveforms improve the accuracy of forward dynamic simulations. Camilleri MJ; Hull ML; Hakansson N J Biomech; 2007; 40(7):1423-32. PubMed ID: 16949082 [TBL] [Abstract][Full Text] [Related]
10. The synthesis of EMG signals based on considerations of signal spectra. Gammans P; Qin SF; Wright DK Biomed Sci Instrum; 2003; 39():187-92. PubMed ID: 12724892 [TBL] [Abstract][Full Text] [Related]
11. Stability analysis for postural control in a two-joint limb system. Lan N IEEE Trans Neural Syst Rehabil Eng; 2002 Dec; 10(4):249-59. PubMed ID: 12611363 [TBL] [Abstract][Full Text] [Related]
12. Adaptive changes in motor control of rhythmic movement after maximal eccentric actions. Bottas R; Nicol C; Komi PV; Linnamo V J Electromyogr Kinesiol; 2009 Apr; 19(2):347-56. PubMed ID: 17937994 [TBL] [Abstract][Full Text] [Related]
13. A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model. Iqbal K; Roy A J Biomech Eng; 2009 Jan; 131(1):011002. PubMed ID: 19045918 [TBL] [Abstract][Full Text] [Related]
14. [Motor learning with the minimal involvement of visual afferentation]. Vasil'eva ON; Baginskas A Zh Vyssh Nerv Deiat Im I P Pavlova; 2003; 53(6):681-96. PubMed ID: 14959482 [TBL] [Abstract][Full Text] [Related]
15. Joint angle control by FES using a feedback error learning controller. Kurosawa K; Futami R; Watanabe T; Hoshimiya N IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):359-71. PubMed ID: 16200759 [TBL] [Abstract][Full Text] [Related]
16. Computer simulation of the motoneuron pool-muscle complex. I. Input system and motoneuron pool. Nussbaumer RM; Ruegg DG; Studer LM; Gabriel JP Biol Cybern; 2002 Apr; 86(4):317-33. PubMed ID: 11956812 [TBL] [Abstract][Full Text] [Related]
17. The discontinuous nature of motor execution II. Merging discrete and rhythmic movements in a single-joint system -- the phase entrainment effect. Staude G; Dengler R; Wolf W Biol Cybern; 2002 Jun; 86(6):427-43. PubMed ID: 12111272 [TBL] [Abstract][Full Text] [Related]
18. From the motor cortex to the movement and back again. Teka WW; Hamade KC; Barnett WH; Kim T; Markin SN; Rybak IA; Molkov YI PLoS One; 2017; 12(6):e0179288. PubMed ID: 28632736 [TBL] [Abstract][Full Text] [Related]
19. Controlling balance during quiet standing: proportional and derivative controller generates preceding motor command to body sway position observed in experiments. Masani K; Vette AH; Popovic MR Gait Posture; 2006 Feb; 23(2):164-72. PubMed ID: 16399512 [TBL] [Abstract][Full Text] [Related]
20. Implementation of a physiologically identified PD feedback controller for regulating the active ankle torque during quiet stance. Vette AH; Masani K; Popovic MR IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):235-43. PubMed ID: 17601193 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]