These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 9603518)

  • 1. Regulation of leaf initiation by the terminal ear 1 gene of maize.
    Veit B; Briggs SP; Schmidt RJ; Yanofsky MF; Hake S
    Nature; 1998 May; 393(6681):166-8. PubMed ID: 9603518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specification of adaxial cell fate during maize leaf development.
    Juarez MT; Twigg RW; Timmermans MC
    Development; 2004 Sep; 131(18):4533-44. PubMed ID: 15342478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression patterns of TEL genes in Poaceae suggest a conserved association with cell differentiation.
    Paquet N; Bernadet M; Morin H; Traas J; Dron M; Charon C
    J Exp Bot; 2005 Jun; 56(416):1605-14. PubMed ID: 15837706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RAGGED SEEDLING2 is required for expression of KANADI2 and REVOLUTA homologues in the maize shoot apex.
    Henderson DC; Zhang X; Brooks L; Scanlon MJ
    Genesis; 2006 Aug; 44(8):372-82. PubMed ID: 16858691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leafy head2, which encodes a putative RNA-binding protein, regulates shoot development of rice.
    Xiong GS; Hu XM; Jiao YQ; Yu YC; Chu CC; Li JY; Qian Q; Wang YH
    Cell Res; 2006 Mar; 16(3):267-76. PubMed ID: 16541125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic and molecular analysis of patterning in plant development.
    Hake S; Jackson D
    ASGSB Bull; 1995 Oct; 8(2):29-37. PubMed ID: 11538548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microarray analysis of vegetative phase change in maize.
    Strable J; Borsuk L; Nettleton D; Schnable PS; Irish EE
    Plant J; 2008 Dec; 56(6):1045-57. PubMed ID: 18764925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct mechanisms govern the dosage-dependent and developmentally regulated resistance conferred by the maize Hm2 gene.
    Chintamanani S; Multani DS; Ruess H; Johal GS
    Mol Plant Microbe Interact; 2008 Jan; 21(1):79-86. PubMed ID: 18052885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The maize duplicate genes narrow sheath1 and narrow sheath2 encode a conserved homeobox gene function in a lateral domain of shoot apical meristems.
    Nardmann J; Ji J; Werr W; Scanlon MJ
    Development; 2004 Jun; 131(12):2827-39. PubMed ID: 15169755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maize floral regulator protein INDETERMINATE1 is localized to developing leaves and is not altered by light or the sink/source transition.
    Wong AY; Colasanti J
    J Exp Bot; 2007; 58(3):403-14. PubMed ID: 17307745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1.
    Giulini A; Wang J; Jackson D
    Nature; 2004 Aug; 430(7003):1031-4. PubMed ID: 15329722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maize rough sheath2 and its Arabidopsis orthologue ASYMMETRIC LEAVES1 interact with HIRA, a predicted histone chaperone, to maintain knox gene silencing and determinacy during organogenesis.
    Phelps-Durr TL; Thomas J; Vahab P; Timmermans MC
    Plant Cell; 2005 Nov; 17(11):2886-98. PubMed ID: 16243907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. WOX gene phylogeny in Poaceae: a comparative approach addressing leaf and embryo development.
    Nardmann J; Zimmermann R; Durantini D; Kranz E; Werr W
    Mol Biol Evol; 2007 Nov; 24(11):2474-84. PubMed ID: 17768306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation.
    Taramino G; Sauer M; Stauffer JL; Multani D; Niu X; Sakai H; Hochholdinger F
    Plant J; 2007 May; 50(4):649-59. PubMed ID: 17425722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression and nucleotide diversity of the maize RIK gene.
    Buckner B; Swaggart KA; Wong CC; Smith HA; Aurand KM; Scanlon MJ; Schnable PS; Janick-Buckner D
    J Hered; 2008; 99(4):407-16. PubMed ID: 18310068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clonal mosaic analysis of EMPTY PERICARP2 reveals nonredundant functions of the duplicated HEAT SHOCK FACTOR BINDING PROTEINs during maize shoot development.
    Fu S; Scanlon MJ
    Genetics; 2004 Jul; 167(3):1381-94. PubMed ID: 15280250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A WUSCHEL-LIKE HOMEOBOX gene represses a YABBY gene expression required for rice leaf development.
    Dai M; Hu Y; Zhao Y; Liu H; Zhou DX
    Plant Physiol; 2007 May; 144(1):380-90. PubMed ID: 17351053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The HD-ZIP IV transcription factor OCL4 is necessary for trichome patterning and anther development in maize.
    Vernoud V; Laigle G; Rozier F; Meeley RB; Perez P; Rogowsky PM
    Plant J; 2009 Sep; 59(6):883-94. PubMed ID: 19453441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PLASTOCHRON2 regulates leaf initiation and maturation in rice.
    Kawakatsu T; Itoh J; Miyoshi K; Kurata N; Alvarez N; Veit B; Nagato Y
    Plant Cell; 2006 Mar; 18(3):612-25. PubMed ID: 16461585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Architecture of floral branch systems in maize and related grasses.
    Vollbrecht E; Springer PS; Goh L; Buckler ES; Martienssen R
    Nature; 2005 Aug; 436(7054):1119-26. PubMed ID: 16041362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.