These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 9603784)
1. Cytochemical demonstration of oxidative damage in Alzheimer disease by immunochemical enhancement of the carbonyl reaction with 2,4-dinitrophenylhydrazine. Smith MA; Sayre LM; Anderson VE; Harris PL; Beal MF; Kowall N; Perry G J Histochem Cytochem; 1998 Jun; 46(6):731-5. PubMed ID: 9603784 [TBL] [Abstract][Full Text] [Related]
2. Detection and localization of markers of oxidative stress by in situ methods: application in the study of Alzheimer disease. Moreira PI; Sayre LM; Zhu X; Nunomura A; Smith MA; Perry G Methods Mol Biol; 2010; 610():419-34. PubMed ID: 20013193 [TBL] [Abstract][Full Text] [Related]
3. Metabolic, metallic, and mitotic sources of oxidative stress in Alzheimer disease. Smith MA; Nunomura A; Zhu X; Takeda A; Perry G Antioxid Redox Signal; 2000; 2(3):413-20. PubMed ID: 11229355 [TBL] [Abstract][Full Text] [Related]
4. Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation. Effects of Alzheimer disease and identification of lipoxidation targets. Pamplona R; Dalfó E; Ayala V; Bellmunt MJ; Prat J; Ferrer I; Portero-Otín M J Biol Chem; 2005 Jun; 280(22):21522-30. PubMed ID: 15799962 [TBL] [Abstract][Full Text] [Related]
5. Reactive carbonyl formation by oxidative and non-oxidative pathways. Adams S; Green P; Claxton R; Simcox S; Williams MV; Walsh K; Leeuwenburgh C Front Biosci; 2001 Aug; 6():A17-24. PubMed ID: 11487471 [TBL] [Abstract][Full Text] [Related]
6. Chemical nature of stochastic generation of protein-based carbonyls: metal-catalyzed oxidation versus modification by products of lipid oxidation. Yuan Q; Zhu X; Sayre LM Chem Res Toxicol; 2007 Jan; 20(1):129-39. PubMed ID: 17226935 [TBL] [Abstract][Full Text] [Related]
7. Immunochemical crossreactivity of antibodies specific for "advanced glycation endproducts" with "advanced lipoxidation endproducts". Richter T; Münch G; Lüth HJ; Arendt T; Kientsch-Engel R; Stahl P; Fengler D; Kuhla B Neurobiol Aging; 2005 Apr; 26(4):465-74. PubMed ID: 15653175 [TBL] [Abstract][Full Text] [Related]
8. Histochemical and immunocytochemical approaches to the study of oxidative stress. Raina AK; Perry G; Nunomura A; Sayre LM; Smith MA Clin Chem Lab Med; 2000 Feb; 38(2):93-7. PubMed ID: 10834395 [TBL] [Abstract][Full Text] [Related]
9. In vivo protection by the xanthate tricyclodecan-9-yl-xanthogenate against amyloid beta-peptide (1-42)-induced oxidative stress. Perluigi M; Joshi G; Sultana R; Calabrese V; De Marco C; Coccia R; Butterfield DA Neuroscience; 2006; 138(4):1161-70. PubMed ID: 16427207 [TBL] [Abstract][Full Text] [Related]
10. Oxidative damage in the olfactory system in Alzheimer's disease. Perry G; Castellani RJ; Smith MA; Harris PL; Kubat Z; Ghanbari K; Jones PK; Cordone G; Tabaton M; Wolozin B; Ghanbari H Acta Neuropathol; 2003 Dec; 106(6):552-6. PubMed ID: 12955399 [TBL] [Abstract][Full Text] [Related]
11. Protein carbonylation: avoiding pitfalls in the 2,4-dinitrophenylhydrazine assay. Luo S; Wehr NB Redox Rep; 2009; 14(4):159-66. PubMed ID: 19695123 [TBL] [Abstract][Full Text] [Related]
12. Alzheimer-specific epitopes of tau represent lipid peroxidation-induced conformations. Liu Q; Smith MA; Avilá J; DeBernardis J; Kansal M; Takeda A; Zhu X; Nunomura A; Honda K; Moreira PI; Oliveira CR; Santos MS; Shimohama S; Aliev G; de la Torre J; Ghanbari HA; Siedlak SL; Harris PL; Sayre LM; Perry G Free Radic Biol Med; 2005 Mar; 38(6):746-54. PubMed ID: 15721985 [TBL] [Abstract][Full Text] [Related]
13. Hydroxynonenal, toxic carbonyls, and Alzheimer disease. Liu Q; Raina AK; Smith MA; Sayre LM; Perry G Mol Aspects Med; 2003; 24(4-5):305-13. PubMed ID: 12893008 [TBL] [Abstract][Full Text] [Related]
14. 2,4-dinitrophenylhydrazine carbonyl assay in metal-catalysed protein glycoxidation. Stefek M; Trnkova Z; Krizanova L Redox Rep; 1999; 4(1-2):43-8. PubMed ID: 10714275 [TBL] [Abstract][Full Text] [Related]
15. Protein carbonylation: 2,4-dinitrophenylhydrazine reacts with both aldehydes/ketones and sulfenic acids. Dalle-Donne I; Carini M; Orioli M; Vistoli G; Regazzoni L; Colombo G; Rossi R; Milzani A; Aldini G Free Radic Biol Med; 2009 May; 46(10):1411-9. PubMed ID: 19268703 [TBL] [Abstract][Full Text] [Related]
16. Glutamic and aminoadipic semialdehydes are the main carbonyl products of metal-catalyzed oxidation of proteins. Requena JR; Chao CC; Levine RL; Stadtman ER Proc Natl Acad Sci U S A; 2001 Jan; 98(1):69-74. PubMed ID: 11120890 [TBL] [Abstract][Full Text] [Related]
17. Mitochondria and vascular lesions as a central target for the development of Alzheimer's disease and Alzheimer disease-like pathology in transgenic mice. Aliev G; Seyidova D; Lamb BT; Obrenovich ME; Siedlak SL; Vinters HV; Friedland RP; LaManna JC; Smith MA; Perry G Neurol Res; 2003 Sep; 25(6):665-74. PubMed ID: 14503022 [TBL] [Abstract][Full Text] [Related]
18. Crotonaldehyde accumulates in glial cells of Alzheimer's disease brain. Kawaguchi-Niida M; Shibata N; Morikawa S; Uchida K; Yamamoto T; Sawada T; Kobayashi M Acta Neuropathol; 2006 May; 111(5):422-9. PubMed ID: 16538519 [TBL] [Abstract][Full Text] [Related]
20. Role of by-products of lipid oxidation in Alzheimer's disease brain: a focus on acrolein. Singh M; Dang TN; Arseneault M; Ramassamy C J Alzheimers Dis; 2010; 21(3):741-56. PubMed ID: 20634576 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]