These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 9603854)
1. Phosphoenolpyruvate phosphomutase activity in an L-phosphonoalanine-mineralizing strain of burkholderia cepacia. Ternan NG; McGrath JW; Quinn JP Appl Environ Microbiol; 1998 Jun; 64(6):2291-4. PubMed ID: 9603854 [TBL] [Abstract][Full Text] [Related]
2. The purification and characterization of phosphonopyruvate hydrolase, a novel carbon-phosphorus bond cleavage enzyme from Variovorax sp Pal2. Kulakova AN; Wisdom GB; Kulakov LA; Quinn JP J Biol Chem; 2003 Jun; 278(26):23426-31. PubMed ID: 12697754 [TBL] [Abstract][Full Text] [Related]
3. Initial in vitro characterisation of phosphonopyruvate hydrolase, a novel phosphate starvation-independent, carbon-phosphorus bond cleavage enzyme in Burkholderia cepacia Pal6. Ternan NG; Hamilton JT; Quinn JP Arch Microbiol; 2000 Jan; 173(1):35-41. PubMed ID: 10648102 [TBL] [Abstract][Full Text] [Related]
4. In vitro cleavage of the carbon-phosphorus bond of phosphonopyruvate by cell extracts of an environmental Burkholderia cepacia isolate. Ternan NG; Quinn JP Biochem Biophys Res Commun; 1998 Jul; 248(2):378-81. PubMed ID: 9675144 [TBL] [Abstract][Full Text] [Related]
5. Expression of the phosphonoalanine-degradative gene cluster from Variovorax sp. Pal2 is induced by growth on phosphonoalanine and phosphonopyruvate. Kulakova AN; Kulakov LA; Villarreal-Chiu JF; Gilbert JA; McGrath JW; Quinn JP FEMS Microbiol Lett; 2009 Mar; 292(1):100-6. PubMed ID: 19191873 [TBL] [Abstract][Full Text] [Related]
6. The synthesis of 3-phosphonoalanine, phosphonopyruvic acid and phosphonolactic acid. Scission of the C-P bond during diazotization of phosphonoalanine. Sparkes MJ; Rogers KL; Dixon HB Eur J Biochem; 1990 Dec; 194(2):373-6. PubMed ID: 2269273 [TBL] [Abstract][Full Text] [Related]
7. Purification and characterization of phosphoenolpyruvate phosphomutase from Pseudomonas gladioli B-1. Nakashita H; Shimazu A; Hidaka T; Seto H J Bacteriol; 1992 Nov; 174(21):6857-61. PubMed ID: 1400236 [TBL] [Abstract][Full Text] [Related]
8. Purification and characterization of the Tetrahymena pyriformis P-C bond forming enzyme phosphoenolpyruvate phosphomutase. Bowman ED; McQueney MS; Scholten JD; Dunaway-Mariano D Biochemistry; 1990 Jul; 29(30):7059-63. PubMed ID: 2121271 [TBL] [Abstract][Full Text] [Related]
9. Studies on the biosynthesis of bialaphos (SF-1293). 9. Biochemical mechanism of C-P bond formation in bialaphos: discovery of phosphoenolpyruvate phosphomutase which catalyzes the formation of phosphonopyruvate from phosphoenolpyruvate. Hidaka T; Mori M; Imai S; Hara O; Nagaoka K; Seto H J Antibiot (Tokyo); 1989 Mar; 42(3):491-4. PubMed ID: 2708146 [No Abstract] [Full Text] [Related]
10. Phosphoenolpyruvate mutase catalysis of phosphoryl transfer in phosphoenolpyruvate: kinetics and mechanism of phosphorus-carbon bond formation. Kim J; Dunaway-Mariano D Biochemistry; 1996 Apr; 35(14):4628-35. PubMed ID: 8605214 [TBL] [Abstract][Full Text] [Related]
11. Studies on the biosynthesis of bialaphos. Biochemical mechanism of C-P bond formation: discovery of phosphonopyruvate decarboxylase which catalyzes the formation of phosphonoacetaldehyde from phosphonopyruvate. Nakashita H; Watanabe K; Hara O; Hidaka T; Seto H J Antibiot (Tokyo); 1997 Mar; 50(3):212-9. PubMed ID: 9439692 [TBL] [Abstract][Full Text] [Related]
12. Phosphonate biosynthesis: isolation of the enzyme responsible for the formation of a carbon-phosphorus bond. Seidel HM; Freeman S; Seto H; Knowles JR Nature; 1988 Sep; 335(6189):457-8. PubMed ID: 3138545 [TBL] [Abstract][Full Text] [Related]
13. Studies on the biosynthesis of bialaphos. Biochemical mechanism of C-P bond formation: discovery of phosphonopyruvate decarboxylase which catalyzes the formation of phosphonoacetaldehyde from phosphonopyruvate. Nakashita H; Watanabe K; Hara O; Hidaka T; Seto H J Antibiot (Tokyo); 1997 Mar; 50(3):212-9. PubMed ID: 9127192 [TBL] [Abstract][Full Text] [Related]
14. Burkholderia cepacia complex genomovars: utilization of carbon sources, susceptibility to antimicrobial agents and growth on selective media. Vermis K; Vandamme PA; Nelis HJ J Appl Microbiol; 2003; 95(6):1191-9. PubMed ID: 14632991 [TBL] [Abstract][Full Text] [Related]
15. Lipopolysaccharide from Burkholderia vietnamiensis strain LMG 6999 contains two polymers identical to those present in the reference strain for Burkholderia cepacia serogroup O4. Gaur D; Wilkinson SG FEMS Microbiol Lett; 1997 Dec; 157(1):183-8. PubMed ID: 9418254 [TBL] [Abstract][Full Text] [Related]
16. Role of ornibactin biosynthesis in the virulence of Burkholderia cepacia: characterization of pvdA, the gene encoding L-ornithine N(5)-oxygenase. Sokol PA; Darling P; Woods DE; Mahenthiralingam E; Kooi C Infect Immun; 1999 Sep; 67(9):4443-55. PubMed ID: 10456885 [TBL] [Abstract][Full Text] [Related]
17. Identification and expression of the gene encoding phosphonopyruvate decarboxylase of Streptomyces hygroscopicus. Nakashita H; Kozuka K; Hidaka T; Hara O; Seto H Biochim Biophys Acta; 2000 Jan; 1490(1-2):159-62. PubMed ID: 10786631 [TBL] [Abstract][Full Text] [Related]
18. New ways to break an old bond: the bacterial carbon-phosphorus hydrolases and their role in biogeochemical phosphorus cycling. Quinn JP; Kulakova AN; Cooley NA; McGrath JW Environ Microbiol; 2007 Oct; 9(10):2392-400. PubMed ID: 17803765 [TBL] [Abstract][Full Text] [Related]
19. Natural selection for 2,4,5-trichlorophenoxyacetic acid mineralizing bacteria in agent orange contaminated soil. Rice JF; Menn FM; Hay AG; Sanseverino J; Sayler GS Biodegradation; 2005 Dec; 16(6):501-12. PubMed ID: 15865343 [TBL] [Abstract][Full Text] [Related]
20. Resistance of planktonic and biofilm-grown Burkholderia cepacia complex isolates to the transition metal gallium. Peeters E; Nelis HJ; Coenye T J Antimicrob Chemother; 2008 May; 61(5):1062-5. PubMed ID: 18310047 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]