BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 9603933)

  • 1. The phosphate carrier from yeast mitochondria. Dimerization is a prerequisite for function.
    Schroers A; Burkovski A; Wohlrab H; Krämer R
    J Biol Chem; 1998 Jun; 273(23):14269-76. PubMed ID: 9603933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patch clamp investigation into the phosphate carrier from Saccharomyces cerevisiae mitochondria.
    Herick K; Krämer R; Lühring H
    Biochim Biophys Acta; 1997 Oct; 1321(3):207-20. PubMed ID: 9393638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reversible antiport-uniport conversion of the phosphate carrier from yeast mitochondria depends on the presence of a single cysteine.
    Schroers A; Krämer R; Wohlrab H
    J Biol Chem; 1997 Apr; 272(16):10558-64. PubMed ID: 9099701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replacements of basic and hydroxyl amino acids identify structurally and functionally sensitive regions of the mitochondrial phosphate transport protein.
    Briggs C; Mincone L; Wohlrab H
    Biochemistry; 1999 Apr; 38(16):5096-102. PubMed ID: 10213613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphate transport in mitochondria: past accomplishments, present problems, and future challenges.
    Ferreira GC; Pedersen PL
    J Bioenerg Biomembr; 1993 Oct; 25(5):483-92. PubMed ID: 8132488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yeast mitochondrial phosphate transport protein expressed in Escherichia coli. Site-directed mutations at threonine-43 and at a similar location in the second tandem repeat (isoleucine-141).
    Wohlrab H; Briggs C
    Biochemistry; 1994 Aug; 33(32):9371-5. PubMed ID: 8068613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial phosphate transport. N-ethylmaleimide insensitivity correlates with absence of beef heart-like Cys42 from the Saccharomyces cerevisiae phosphate transport protein.
    Guérin B; Bukusoglu C; Rakotomanana F; Wohlrab H
    J Biol Chem; 1990 Nov; 265(32):19736-41. PubMed ID: 2246257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of mitochondrial phosphate carrier with fatty acids and hydrophobic phosphate analogs.
    Zácková M; Krämer R; Jezek P
    Int J Biochem Cell Biol; 2000 May; 32(5):499-508. PubMed ID: 10736565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression in Escherichia coli, functional characterization, and tissue distribution of isoforms A and B of the phosphate carrier from bovine mitochondria.
    Fiermonte G; Dolce V; Palmieri F
    J Biol Chem; 1998 Aug; 273(35):22782-7. PubMed ID: 9712911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial phosphate transport protein. Reversions of inhibitory conservative mutations identify four helices and a nonhelix protein segment with transmembrane interactions and Asp39, Glu137, and Ser158 as nonessential for transport.
    Phelps A; Briggs C; Haefele A; Mincone L; Ligeti E; Wohlrab H
    Biochemistry; 2001 Feb; 40(7):2080-6. PubMed ID: 11329276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional aspects of the phosphate carrier from mitochondria.
    Krämer R
    Kidney Int; 1996 Apr; 49(4):947-52. PubMed ID: 8691742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies of cytochrome c oxidase-driven H(+)-coupled phosphate transport catalyzed by the Saccharomyces cerevisiae Pho84 permease in coreconstituted vesicles.
    Fristedt U; van Der Rest M; Poolman B; Konings WN; Persson BL
    Biochemistry; 1999 Nov; 38(48):16010-5. PubMed ID: 10625469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural and azido fatty acids inhibit phosphate transport and activate fatty acid anion uniport mediated by the mitochondrial phosphate carrier.
    Engstová H; Zácková M; Růzicka M; Meinhardt A; Hanus J; Krämer R; Jezek P
    J Biol Chem; 2001 Feb; 276(7):4683-91. PubMed ID: 11085992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The phosphate carrier has an ability to be sorted to either the TIM22 pathway or the TIM23 pathway for its import into yeast mitochondria.
    Yamano K; Ishikawa D; Esaki M; Endo T
    J Biol Chem; 2005 Mar; 280(11):10011-7. PubMed ID: 15644337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the yeast ARG-11 gene as a mitochondrial ornithine carrier involved in arginine biosynthesis.
    Palmieri L; De Marco V; Iacobazzi V; Palmieri F; Runswick MJ; Walker JE
    FEBS Lett; 1997 Jun; 410(2-3):447-51. PubMed ID: 9237680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and folding of recombinant bovine oxoglutarate/malate carrier by immobilized metal-ion affinity chromatography.
    Smith VR; Walker JE
    Protein Expr Purif; 2003 Jun; 29(2):209-16. PubMed ID: 12767811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chimers of two fused ADP/ATP carrier monomers indicate a single channel for ADP/ATP transport.
    Huang SG; Odoy S; Klingenberg M
    Arch Biochem Biophys; 2001 Oct; 394(1):67-75. PubMed ID: 11566029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biogenesis of the mitochondrial phosphate carrier.
    Zara V; Rassow J; Wachter E; Tropschug M; Palmieri F; Neupert W; Pfanner N
    Eur J Biochem; 1991 Jun; 198(2):405-10. PubMed ID: 2040301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification of a reconstitutively active mitochondrial phosphate transport protein.
    Wohlrab H
    J Biol Chem; 1980 Sep; 255(17):8170-3. PubMed ID: 7410356
    [No Abstract]   [Full Text] [Related]  

  • 20. Identification of amino acid residues of mammalian mitochondrial phosphate carrier important for its functional expression in yeast cells, as achieved by PCR-mediated random mutation and gap-repair cloning.
    Yamagoshi R; Yamamoto T; Hashimoto M; Sugahara R; Shiotsuki T; Miyoshi H; Terada H; Shinohara Y
    Mitochondrion; 2017 Jan; 32():1-9. PubMed ID: 27836624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.