BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 9603956)

  • 1. Domain mapping of human apurinic/apyrimidinic endonuclease. Structural and functional evidence for a disordered amino terminus and a tight globular carboxyl domain.
    Strauss PR; Holt CM
    J Biol Chem; 1998 Jun; 273(23):14435-41. PubMed ID: 9603956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abasic site recognition by two apurinic/apyrimidinic endonuclease families in DNA base excision repair: the 3' ends justify the means.
    Mol CD; Hosfield DJ; Tainer JA
    Mutat Res; 2000 Aug; 460(3-4):211-29. PubMed ID: 10946230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate binding by human apurinic/apyrimidinic endonuclease indicates a Briggs-Haldane mechanism.
    Strauss PR; Beard WA; Patterson TA; Wilson SH
    J Biol Chem; 1997 Jan; 272(2):1302-7. PubMed ID: 8995436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oligonucleotides with bistranded abasic sites interfere with substrate binding and catalysis by human apurinic/apyrimidinic endonuclease.
    McKenzie JA; Strauss PR
    Biochemistry; 2001 Nov; 40(44):13254-61. PubMed ID: 11683634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human apurinic/apyrimidinic endonuclease is processive.
    Carey DC; Strauss PR
    Biochemistry; 1999 Dec; 38(50):16553-60. PubMed ID: 10600117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping the protein-DNA interface and the metal-binding site of the major human apurinic/apyrimidinic endonuclease.
    Nguyen LH; Barsky D; Erzberger JP; Wilson DM
    J Mol Biol; 2000 May; 298(3):447-59. PubMed ID: 10772862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Escherichia coli apurinic-apyrimidinic endonucleases enhance the turnover of the adenine glycosylase MutY with G:A substrates.
    Pope MA; Porello SL; David SS
    J Biol Chem; 2002 Jun; 277(25):22605-15. PubMed ID: 11960995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drosophila Rrp1 domain structure as defined by limited proteolysis and biophysical analyses.
    Reardon BJ; Lombardo CR; Sander M
    J Biol Chem; 1998 Dec; 273(51):33991-9. PubMed ID: 9852053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An unusual mechanism for the major human apurinic/apyrimidinic (AP) endonuclease involving 5' cleavage of DNA containing a benzene-derived exocyclic adduct in the absence of an AP site.
    Hang B; Chenna A; Fraenkel-Conrat H; Singer B
    Proc Natl Acad Sci U S A; 1996 Nov; 93(24):13737-41. PubMed ID: 8943004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-turnover analysis of mutant human apurinic/apyrimidinic endonuclease.
    Lucas JA; Masuda Y; Bennett RA; Strauss NS; Strauss PR
    Biochemistry; 1999 Apr; 38(16):4958-64. PubMed ID: 10213597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. YqfS from Bacillus subtilis is a spore protein and a new functional member of the type IV apurinic/apyrimidinic-endonuclease family.
    Salas-Pacheco JM; Urtiz-Estrada N; Martínez-Cadena G; Yasbin RE; Pedraza-Reyes M
    J Bacteriol; 2003 Sep; 185(18):5380-90. PubMed ID: 12949090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The apurinic-apyrimidinic endonuclease IV family of DNA repair enzymes.
    Ramotar D
    Biochem Cell Biol; 1997; 75(4):327-36. PubMed ID: 9493955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the DNA repair enzyme endonuclease IV and its DNA complex: double-nucleotide flipping at abasic sites and three-metal-ion catalysis.
    Hosfield DJ; Guan Y; Haas BJ; Cunningham RP; Tainer JA
    Cell; 1999 Aug; 98(3):397-408. PubMed ID: 10458614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of Mg2+ and specific amino acid residues in the catalytic reaction of the major human abasic endonuclease: new insights from EDTA-resistant incision of acyclic abasic site analogs and site-directed mutagenesis.
    Erzberger JP; Wilson DM
    J Mol Biol; 1999 Jul; 290(2):447-57. PubMed ID: 10390343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repair of apurinic/apyrimidinic sites by UV damage endonuclease; a repair protein for UV and oxidative damage.
    Kanno S; Iwai S; Takao M; Yasui A
    Nucleic Acids Res; 1999 Aug; 27(15):3096-103. PubMed ID: 10454605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of amino acid substitutions that severely alter the DNA repair functions of Escherichia coli endonuclease IV.
    Yang X; Tellier P; Masson JY; Vu T; Ramotar D
    Biochemistry; 1999 Mar; 38(12):3615-23. PubMed ID: 10090748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Truncation of amino-terminal tail stimulates activity of human endonuclease III (hNTH1).
    Liu X; Roy R
    J Mol Biol; 2002 Aug; 321(2):265-76. PubMed ID: 12144783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AP lyases and dRPases: commonality of mechanism.
    Piersen CE; McCullough AK; Lloyd RS
    Mutat Res; 2000 Feb; 459(1):43-53. PubMed ID: 10677682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elements in abasic site recognition by the major human and Escherichia coli apurinic/apyrimidinic endonucleases.
    Erzberger JP; Barsky D; Schärer OD; Colvin ME; Wilson DM
    Nucleic Acids Res; 1998 Jun; 26(11):2771-8. PubMed ID: 9592167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-directed mutagenesis of the human DNA repair enzyme HAP1: identification of residues important for AP endonuclease and RNase H activity.
    Barzilay G; Walker LJ; Robson CN; Hickson ID
    Nucleic Acids Res; 1995 May; 23(9):1544-50. PubMed ID: 7784208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.