These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 9604099)
41. Modulations of saliency signals at two hierarchical levels of priority computation revealed by spatial statistical distractor learning. Liesefeld HR; Müller HJ J Exp Psychol Gen; 2021 Apr; 150(4):710-728. PubMed ID: 33048567 [TBL] [Abstract][Full Text] [Related]
42. Brain structures involved in visual search in the presence and absence of color singletons. Talsma D; Coe B; Munoz DP; Theeuwes J J Cogn Neurosci; 2010 Apr; 22(4):761-74. PubMed ID: 19309291 [TBL] [Abstract][Full Text] [Related]
43. Adaptability and specificity of inhibition processes in distractor-induced blindness. Winther GN; Niedeggen M Psychophysiology; 2017 Dec; 54(12):1882-1898. PubMed ID: 28892157 [TBL] [Abstract][Full Text] [Related]
44. Interactions between top-down and bottom-up attention in barn owls (Tyto alba). Lev-Ari T; Gutfreund Y Anim Cogn; 2018 Mar; 21(2):197-205. PubMed ID: 29214438 [TBL] [Abstract][Full Text] [Related]
45. The influence of temporal selection on spatial selection and distractor interference: an attentional blink study. Jiang Y; Chun MM J Exp Psychol Hum Percept Perform; 2001 Jun; 27(3):664-79. PubMed ID: 11424653 [TBL] [Abstract][Full Text] [Related]
46. Early top-down control over saccadic target selection: Evidence from a systematic salience difference manipulation. Goschy H; Koch AI; Müller HJ; Zehetleitner M Atten Percept Psychophys; 2014 Feb; 76(2):367-82. PubMed ID: 24323673 [TBL] [Abstract][Full Text] [Related]
47. Top-Down Processes Override Bottom-Up Interference in the Flanker Task. Avital-Cohen R; Tsal Y Psychol Sci; 2016 May; 27(5):651-8. PubMed ID: 26993739 [TBL] [Abstract][Full Text] [Related]
48. Absence of attentional capture in parallel search is possible: a failure to replicate attentional capture in a non-singleton target search task. Wienrich C; Janczyk M Atten Percept Psychophys; 2011 Oct; 73(7):2044-52. PubMed ID: 21805210 [TBL] [Abstract][Full Text] [Related]
49. Distractor interference in focused attention tasks is not mediated by attention capture. Gronau N; Cohen A; Ben-Shakhar G Q J Exp Psychol (Hove); 2009 Sep; 62(9):1685-95. PubMed ID: 19382007 [TBL] [Abstract][Full Text] [Related]
50. Top-down attention based on object representation and incremental memory for knowledge building and inference. Kim B; Ban SW; Lee M Neural Netw; 2013 Oct; 46():9-22. PubMed ID: 23624577 [TBL] [Abstract][Full Text] [Related]
51. The attentional blink: A relational accountof attentional engagement. Becker SI; Manoharan RT; Folk CL Psychon Bull Rev; 2021 Feb; 28(1):219-227. PubMed ID: 32989720 [TBL] [Abstract][Full Text] [Related]
52. Altering spatial priority maps via statistical learning of target selection and distractor filtering. Ferrante O; Patacca A; Di Caro V; Della Libera C; Santandrea E; Chelazzi L Cortex; 2018 May; 102():67-95. PubMed ID: 29096874 [TBL] [Abstract][Full Text] [Related]
53. Visual marking: prioritizing selection for new objects by top-down attentional inhibition of old objects. Watson DG; Humphreys GW Psychol Rev; 1997 Jan; 104(1):90-122. PubMed ID: 9009881 [TBL] [Abstract][Full Text] [Related]
54. Priming of Pop-out provides reliable measures of target activation and distractor inhibition in selective attention. Lamy D; Antebi C; Aviani N; Carmel T Vision Res; 2008 Jan; 48(1):30-41. PubMed ID: 18054983 [TBL] [Abstract][Full Text] [Related]
56. Predictive distractor context facilitates attentional selection of high, but not intermediate and low, salience targets. Töllner T; Conci M; Müller HJ Hum Brain Mapp; 2015 Mar; 36(3):935-44. PubMed ID: 25351495 [TBL] [Abstract][Full Text] [Related]
57. Bottom-up and top-down control in visual search. van Zoest W; Donk M Perception; 2004; 33(8):927-37. PubMed ID: 15521692 [TBL] [Abstract][Full Text] [Related]
59. Target objects defined by a conjunction of colour and shape can be selected independently and in parallel. Jenkins M; Grubert A; Eimer M Atten Percept Psychophys; 2017 Nov; 79(8):2310-2326. PubMed ID: 28849409 [TBL] [Abstract][Full Text] [Related]
60. Polarity-dependent Effects of Biparietal Transcranial Direct Current Stimulation on the Interplay between Target Location and Distractor Saliency in Visual Attention. Chechlacz M; Hansen PC; Geng JJ; Cazzoli D J Cogn Neurosci; 2018 Jun; 30(6):851-866. PubMed ID: 29393718 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]