BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 9604303)

  • 1. Linkage between the distribution of mutations in the CYP2C18 and CYP2C19 genes in the Japanese and Caucasian.
    Inoue K; Yamazaki H; Shimada T
    Xenobiotica; 1998 Apr; 28(4):403-11. PubMed ID: 9604303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linkage of mutant alleles of CYP2C18 and CYP2C19 in a Japanese population.
    Kubota T; Hibi N; Chiba K
    Biochem Pharmacol; 1998 Jun; 55(12):2039-42. PubMed ID: 9714325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between CYP2C9 and 2C19 genotypes and tolbutamide methyl hydroxylation and S-mephenytoin 4'-hydroxylation activities in livers of Japanese and Caucasian populations.
    Inoue K; Yamazaki H; Imiya K; Akasaka S; Guengerich FP; Shimada T
    Pharmacogenetics; 1997 Apr; 7(2):103-13. PubMed ID: 9170147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Genetic polymorphism of the CYP2C subfamily].
    Chiba K
    Nihon Yakurigaku Zasshi; 1998 Jul; 112(1):15-21. PubMed ID: 9755458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese.
    De Morais SM; Wilkinson GR; Blaisdell J; Meyer UA; Nakamura K; Goldstein JA
    Mol Pharmacol; 1994 Oct; 46(4):594-8. PubMed ID: 7969038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic polymorphism of cytochrome P450s, CYP2C19, and CYP2C9 in a Japanese population.
    Kimura M; Ieiri I; Mamiya K; Urae A; Higuchi S
    Ther Drug Monit; 1998 Jun; 20(3):243-7. PubMed ID: 9631918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism of warfarin enantiomers in Japanese patients with heart disease having different CYP2C9 and CYP2C19 genotypes.
    Takahashi H; Kashima T; Nomizo Y; Muramoto N; Shimizu T; Nasu K; Kubota T; Kimura S; Echizen H
    Clin Pharmacol Ther; 1998 May; 63(5):519-28. PubMed ID: 9630825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid detection of CYP2C18 genotypes by real-time fluorescence polymerase chain reaction.
    Mizugaki M; Hiratsuka M; Agatsuma Y; Matsubara Y; Fujii K; Kure S; Narisawa K
    J Pharm Pharmacol; 2000 Feb; 52(2):199-205. PubMed ID: 10714950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene structure and upstream regulatory regions of human CYP2C9 and CYP2C18.
    de Morais SM; Schweikl H; Blaisdell J; Goldstein JA
    Biochem Biophys Res Commun; 1993 Jul; 194(1):194-201. PubMed ID: 8333835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of major CYP2C9 and CYP2C19 polymorphisms by fluorescence resonance energy transfer analysis.
    Borlak J; Thum T
    Clin Chem; 2002 Sep; 48(9):1592-4. PubMed ID: 12194942
    [No Abstract]   [Full Text] [Related]  

  • 11. Allele and genotype frequencies of polymorphic cytochromes P450 (CYP2C9, CYP2C19, CYP2E1) and dihydropyrimidine dehydrogenase (DPYD) in the Egyptian population.
    Hamdy SI; Hiratsuka M; Narahara K; El-Enany M; Moursi N; Ahmed MS; Mizugaki M
    Br J Clin Pharmacol; 2002 Jun; 53(6):596-603. PubMed ID: 12047484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequencies of the defective CYP2C19 alleles responsible for the mephenytoin poor metabolizer phenotype in various Oriental, Caucasian, Saudi Arabian and American black populations.
    Goldstein JA; Ishizaki T; Chiba K; de Morais SM; Bell D; Krahn PM; Evans DA
    Pharmacogenetics; 1997 Feb; 7(1):59-64. PubMed ID: 9110363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of genetic polymorphisms of CYP2C9 and CYP2C19 on phenytoin metabolism in Japanese adult patients with epilepsy: studies in stereoselective hydroxylation and population pharmacokinetics.
    Mamiya K; Ieiri I; Shimamoto J; Yukawa E; Imai J; Ninomiya H; Yamada H; Otsubo K; Higuchi S; Tashiro N
    Epilepsia; 1998 Dec; 39(12):1317-23. PubMed ID: 9860067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two single-tube tetra-primer assays to detect the CYP2C19*2 and *3 alleles of S-mephenytoin hydroxylase.
    Hersberger M; Marti-Jaun J; Rentsch K; Hänseler E
    Clin Chem; 2001 Apr; 47(4):772-4. PubMed ID: 11274039
    [No Abstract]   [Full Text] [Related]  

  • 15. Genetic polymorphisms of drug-metabolizing enzymes CYP2D6, CYP2C9, CYP2C19 and CYP3A5 in the Greek population.
    Arvanitidis K; Ragia G; Iordanidou M; Kyriaki S; Xanthi A; Tavridou A; Manolopoulos VG
    Fundam Clin Pharmacol; 2007 Aug; 21(4):419-26. PubMed ID: 17635181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic polymorphism of CYP2C19 and lansoprazole pharmacokinetics in Japanese subjects.
    Katsuki H; Nakamura C; Arimori K; Fujiyama S; Nakano M
    Eur J Clin Pharmacol; 1997; 52(5):391-6. PubMed ID: 9272410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CYP2C9 polymorphism: impact on tolbutamide pharmacokinetics and response.
    Miners J
    Pharmacogenetics; 2002 Mar; 12(2):91-2. PubMed ID: 11875362
    [No Abstract]   [Full Text] [Related]  

  • 18. Polymorphisms of drug-metabolizing enzymes CYP2C9, CYP2C19, CYP2D6, CYP1A1, NAT2 and of P-glycoprotein in a Russian population.
    Gaikovitch EA; Cascorbi I; Mrozikiewicz PM; Brockmöller J; Frötschl R; Köpke K; Gerloff T; Chernov JN; Roots I
    Eur J Clin Pharmacol; 2003 Aug; 59(4):303-12. PubMed ID: 12879168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic analysis of CYP2C9 polymorphism in a Japanese population.
    Nasu K; Kubota T; Ishizaki T
    Pharmacogenetics; 1997 Oct; 7(5):405-9. PubMed ID: 9352578
    [No Abstract]   [Full Text] [Related]  

  • 20. Effects of CYP2C19 and CYP2C9 genetic polymorphisms on the disposition of and blood glucose lowering response to tolbutamide in humans.
    Shon JH; Yoon YR; Kim KA; Lim YC; Lee KJ; Park JY; Cha IJ; Flockhart DA; Shin JG
    Pharmacogenetics; 2002 Mar; 12(2):111-9. PubMed ID: 11875365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.