These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 9604325)

  • 1. Simultaneous variation of temperature and gradient steepness for reversed-phase high-performance liquid chromatography method development. I. Application to 14 different samples using computer simulation.
    Dolan JW; Snyder LR; Djordjevic NM; Hill DW; Saunders DL; Van Heukelem L; Waeghe TJ
    J Chromatogr A; 1998 Apr; 803(1-2):1-31. PubMed ID: 9604325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous variation of temperature and gradient steepness for reversed-phase high-performance liquid chromatography method development. II. The use of further changes in conditions.
    Dolan JW; Snyder LR; Saunders DL; Van Heukelem L
    J Chromatogr A; 1998 Apr; 803(1-2):33-50. PubMed ID: 9604326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer simulation as a tool for the rapid optimization of the high-performance liquid chromatographic separation of a tryptic digest of human growth hormone.
    Chloupek RC; Hancock WS; Snyder LR
    J Chromatogr; 1992 Mar; 594(1-2):65-73. PubMed ID: 1587930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer-assisted method development and optimization in high-performance liquid chromatography.
    Hoang TH; Cuerrier D; McClintock S; Di Maso M
    J Chromatogr A; 2003 Apr; 991(2):281-7. PubMed ID: 12741606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of DRYLAB to compare octadecylsilane and carbon supports for reversed-phase chromatography of triazine herbicide test solutes.
    Schellinger AP; Mao Y; Carr PW
    Anal Bioanal Chem; 2002 Aug; 373(7):587-94. PubMed ID: 12185569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments.
    Van Heukelem L; Thomas CS
    J Chromatogr A; 2001 Feb; 910(1):31-49. PubMed ID: 11263574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature as a variable in reversed-phase high-performance liquid chromatographic separations of peptide and protein samples. II. Selectivity effects observed in the separation of several peptide and protein mixtures.
    Chloupek RC; Hancock WS; Marchylo BA; Kirkland JJ; Boyes BE; Snyder LR
    J Chromatogr A; 1994 Nov; 686(1):45-59. PubMed ID: 7849983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature as a variable in reversed-phase high-performance liquid chromatographic separations of peptide and protein samples. I. Optimizing the separation of a growth hormone tryptic digest.
    Hancock WS; Chloupek RC; Kirkland JJ; Snyder LR
    J Chromatogr A; 1994 Nov; 686(1):31-43. PubMed ID: 7849982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of an isocratic reversed phase liquid chromatographic system for the separation of fourteen steroids using factorial design and computer simulation.
    Wei JQ; Wei JL; Zhou XT
    Biomed Chromatogr; 1990 Jan; 4(1):34-8. PubMed ID: 2310840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvent optimization of reversed-phase high-performance liquid chromatography for polar adrenal steroids using computer-predicted retentions.
    D'Agostino G; Mitchell F; Castagnetta L; O'Hare MJ
    J Chromatogr; 1984 Jan; 305(1):13-26. PubMed ID: 6707136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selectivity differences for C18 and C8 reversed-phase columns as a function of temperature and gradient steepness. I. Optimizing selectivity and resolution.
    Dolan JW; Snyder LR; Blanc T; Van Heukelem L
    J Chromatogr A; 2000 Nov; 897(1-2):37-50. PubMed ID: 11128220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer simulation for the prediction of separation as a function of pH for reversed-phase high-performance liquid chromatography. I. Accuracy of a theory-based model.
    Lewis JA; Lommen DC; Raddatz WD; Dolan JW; Snyder LR; Molnar I
    J Chromatogr; 1992 Feb; 592(1-2):183-95. PubMed ID: 1583094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature selectivity in reversed-phase high performance liquid chromatography.
    Dolan JW
    J Chromatogr A; 2002 Aug; 965(1-2):195-205. PubMed ID: 12236525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A stepwise strategy employing automated screening and DryLab modeling for the development of robust methods for challenging high performance liquid chromatography separations: a case study.
    Jayaraman K; Alexander AJ; Hu Y; Tomasella FP
    Anal Chim Acta; 2011 Jun; 696(1-2):116-24. PubMed ID: 21621040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversed-phase liquid chromatographic separation of complex samples by optimizing temperature and gradient time III. Improving the accuracy of computer simulation.
    Dolan JW; Snyder LR; Wolcott RG; Haber P; Baczek T; Kaliszan R; Sander LC
    J Chromatogr A; 1999 Oct; 857(1-2):41-68. PubMed ID: 10536825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of a computer to select optimized conditions for high-performance liquid chromatography separation.
    Snyder LR; Lommen DC
    J Pharm Biomed Anal; 1991; 9(8):611-8. PubMed ID: 1790181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined use of temperature and solvent strength in reversed-phase gradient elution. I. Predicting separation as a function of temperature and gradient conditions.
    Zhu PL; Snyder LR; Dolan JW; Djordjevic NM; Hill DW; Sander LC; Waeghe TJ
    J Chromatogr A; 1996 Dec; 756(1-2):21-39. PubMed ID: 9008855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DryLab computer simulation for high-performance liquid chromatographic method development. II. Gradient elution.
    Dolan JW; Lommen DC; Snyder LR
    J Chromatogr; 1989 Dec; 485():91-112. PubMed ID: 2696740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer simulation for the simultaneous optimization of any two variables and any chromatographic procedure.
    Haber P; Baczek T; Kaliszan R; Snyder LR; Dolan JW; Wehr CT
    J Chromatogr Sci; 2000 Sep; 38(9):386-92. PubMed ID: 11011722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategy for developing and optimizing liquid chromatography methods in pharmaceutical development using computer-assisted screening and Plackett-Burman experimental design.
    Li W; Rasmussen HT
    J Chromatogr A; 2003 Oct; 1016(2):165-80. PubMed ID: 14601837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.