These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. A parametric model of the spectral periodicity of stimulus frequency otoacoustic emissions. Lineton B; Lutman ME J Acoust Soc Am; 2003 Aug; 114(2):883-95. PubMed ID: 12942970 [TBL] [Abstract][Full Text] [Related]
6. Suppression of distortion product otoacoustic emissions and hearing threshold. Pienkowski M; Kunov H J Acoust Soc Am; 2001 Apr; 109(4):1496-502. PubMed ID: 11325121 [TBL] [Abstract][Full Text] [Related]
7. Generation of DPOAEs in the guinea pig. Withnell RH; Shaffer LA; Talmadge CL Hear Res; 2003 Apr; 178(1-2):106-17. PubMed ID: 12684183 [TBL] [Abstract][Full Text] [Related]
8. Otoacoustic emissions from ears with spontaneous activity behave differently to those without: Stronger responses to tone bursts as well as to clicks. Jedrzejczak WW; Kochanek K; Skarzynski H PLoS One; 2018; 13(2):e0192930. PubMed ID: 29451905 [TBL] [Abstract][Full Text] [Related]
9. Comparison between otoacoustic and auditory brainstem response latencies supports slow backward propagation of otoacoustic emissions. Moleti A; Sisto R J Acoust Soc Am; 2008 Mar; 123(3):1495-503. PubMed ID: 18345838 [TBL] [Abstract][Full Text] [Related]
10. Estimation of distortion product otoacoustic emissions. Ma WK; Zhang YT IEEE Trans Biomed Eng; 1999 Oct; 46(10):1261-4. PubMed ID: 10513132 [TBL] [Abstract][Full Text] [Related]
12. Some effects of tonal fatiguing on spontaneous and distortion-product otoacoustic emissions. Cianfrone G; Mattia M; Cervellini M; Musacchio A Br J Audiol; 1993 Apr; 27(2):123-30. PubMed ID: 8220278 [TBL] [Abstract][Full Text] [Related]
13. Early effects of cerebellopontine angle compression on rabbit distortion-product otoacoustic emissions: a model for monitoring cochlear function during acoustic neuroma surgery. Widick MP; Telischi FF; Lonsbury-Martin BL; Stagner BB Otolaryngol Head Neck Surg; 1994 Oct; 111(4):407-16. PubMed ID: 7936673 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms of mammalian otoacoustic emission and their implications for the clinical utility of otoacoustic emissions. Shera CA Ear Hear; 2004 Apr; 25(2):86-97. PubMed ID: 15064654 [TBL] [Abstract][Full Text] [Related]
15. Steep and shallow phase gradient distortion product otoacoustic emissions arising basal to the primary tones. Martin GK; Stagner BB; Fahey PF; Lonsbury-Martin BL J Acoust Soc Am; 2009 Mar; 125(3):EL85-92. PubMed ID: 19275280 [TBL] [Abstract][Full Text] [Related]
16. Distortion-product otoacoustic emissions in ears with normal hearing sensitivity: test-retest variability. Hallenbeck H; Dancer J Percept Mot Skills; 2003 Dec; 97(3 Pt 1):990-2. PubMed ID: 14738368 [TBL] [Abstract][Full Text] [Related]
17. Distortion product otoacoustic emissions created through the interaction of spontaneous otoacoustic emissions and externally generated tones. Norrix LW; Glattke TJ J Acoust Soc Am; 1996 Aug; 100(2 Pt 1):945-55. PubMed ID: 8759948 [TBL] [Abstract][Full Text] [Related]
18. Distortion-product otoacoustic emission growth curves in neonates. Barbosa TA; Durante AS; Granato L Rev Assoc Med Bras (1992); 2014; 60(6):591-8. PubMed ID: 25650862 [TBL] [Abstract][Full Text] [Related]
19. Frequency shifts in distortion-product otoacoustic emissions evoked by swept tones. Shera CA; Abdala C J Acoust Soc Am; 2016 Aug; 140(2):936. PubMed ID: 27586726 [TBL] [Abstract][Full Text] [Related]
20. Distortion product otoacoustic emissions in sheep before and after hyperinsulinemia induction. Maia FC; Lavinsky L; Möllerke RO; Duarte ME; Pereira DP; Maia JE Braz J Otorhinolaryngol; 2008; 74(2):181-7. PubMed ID: 18568194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]