BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

599 related articles for article (PubMed ID: 9605329)

  • 21. A molecular model for the redox potential difference between thioredoxin and DsbA, based on electrostatics calculations.
    Gane PJ; Freedman RB; Warwicker J
    J Mol Biol; 1995 Jun; 249(2):376-87. PubMed ID: 7783200
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stabilization of the catalytic thiolate in a mammalian glutaredoxin: structure, dynamics and electrostatics of reduced pig glutaredoxin and its mutants.
    Foloppe N; Nilsson L
    J Mol Biol; 2007 Sep; 372(3):798-816. PubMed ID: 17681533
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of the pK(a) value of the buried, active-site cysteine on the redox properties of thioredoxin-like oxidoreductases.
    Mössner E; Iwai H; Glockshuber R
    FEBS Lett; 2000 Jul; 477(1-2):21-6. PubMed ID: 10899304
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the reactivity and ionization of the active site cysteine residues of Escherichia coli thioredoxin.
    Takahashi N; Creighton TE
    Biochemistry; 1996 Jun; 35(25):8342-53. PubMed ID: 8679592
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational and mutational analysis of human glutaredoxin (thioltransferase): probing the molecular basis of the low pKa of cysteine 22 and its role in catalysis.
    Jao SC; English Ospina SM; Berdis AJ; Starke DW; Post CB; Mieyal JJ
    Biochemistry; 2006 Apr; 45(15):4785-96. PubMed ID: 16605247
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrostatic interactions in the active site of the N-terminal thioredoxin-like domain of protein disulfide isomerase.
    Kortemme T; Darby NJ; Creighton TE
    Biochemistry; 1996 Nov; 35(46):14503-11. PubMed ID: 8931546
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enzymatic catalysis of disulfide formation.
    Noiva R
    Protein Expr Purif; 1994 Feb; 5(1):1-13. PubMed ID: 7909462
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-resolution structures of Escherichia coli cDsbD in different redox states: A combined crystallographic, biochemical and computational study.
    Stirnimann CU; Rozhkova A; Grauschopf U; Böckmann RA; Glockshuber R; Capitani G; Grütter MG
    J Mol Biol; 2006 May; 358(3):829-45. PubMed ID: 16545842
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The redox properties of protein disulfide isomerase (DsbA) of Escherichia coli result from a tense conformation of its oxidized form.
    Wunderlich M; Jaenicke R; Glockshuber R
    J Mol Biol; 1993 Oct; 233(4):559-66. PubMed ID: 8411164
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Redox properties of protein disulfide isomerase (DsbA) from Escherichia coli.
    Wunderlich M; Glockshuber R
    Protein Sci; 1993 May; 2(5):717-26. PubMed ID: 8495194
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The primary structure of Escherichia coli glutaredoxin. Distant homology with thioredoxins in a superfamily of small proteins with a redox-active cystine disulfide/cysteine dithiol.
    Höög JO; Jörnvall H; Holmgren A; Carlquist M; Persson M
    Eur J Biochem; 1983 Oct; 136(1):223-32. PubMed ID: 6352262
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure of circularly permuted DsbA(Q100T99): preserved global fold and local structural adjustments.
    Manjasetty BA; Hennecke J; Glockshuber R; Heinemann U
    Acta Crystallogr D Biol Crystallogr; 2004 Feb; 60(Pt 2):304-9. PubMed ID: 14747707
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The structure of the periplasmic thiol-disulfide oxidoreductase SoxS from Paracoccus pantotrophus indicates a triple Trx/Grx/DsbC functionality in chemotrophic sulfur oxidation.
    Carius Y; Rother D; Friedrich CG; Scheidig AJ
    Acta Crystallogr D Biol Crystallogr; 2009 Mar; 65(Pt 3):229-40. PubMed ID: 19237745
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NMR structure of oxidized Escherichia coli glutaredoxin: comparison with reduced E. coli glutaredoxin and functionally related proteins.
    Xia TH; Bushweller JH; Sodano P; Billeter M; Björnberg O; Holmgren A; Wüthrich K
    Protein Sci; 1992 Mar; 1(3):310-21. PubMed ID: 1304339
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural determinants of the catalytic reactivity of the buried cysteine of Escherichia coli thioredoxin.
    LeMaster DM
    Biochemistry; 1996 Nov; 35(47):14876-81. PubMed ID: 8942651
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quenching of tryptophan fluorescence by the active-site disulfide bridge in the DsbA protein from Escherichia coli.
    Hennecke J; Sillen A; Huber-Wunderlich M; Engelborghs Y; Glockshuber R
    Biochemistry; 1997 May; 36(21):6391-400. PubMed ID: 9174355
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of the reduction-oxidation potential of the thioredoxin-like domains of protein disulfide-isomerase from the equilibrium with glutathione and thioredoxin.
    Lundström J; Holmgren A
    Biochemistry; 1993 Jul; 32(26):6649-55. PubMed ID: 8329391
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria.
    Aslund F; Berndt KD; Holmgren A
    J Biol Chem; 1997 Dec; 272(49):30780-6. PubMed ID: 9388218
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Redox potentials of active-site bis(cysteinyl) fragments of thiol-protein oxidoreductases.
    Siedler F; Rudolph-Böhner S; Doi M; Musiol HJ; Moroder L
    Biochemistry; 1993 Jul; 32(29):7488-95. PubMed ID: 8338847
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biochemical and structural study of the homologues of the thiol-disulfide oxidoreductase DsbA in Neisseria meningitidis.
    Lafaye C; Iwema T; Carpentier P; Jullian-Binard C; Kroll JS; Collet JF; Serre L
    J Mol Biol; 2009 Oct; 392(4):952-66. PubMed ID: 19631659
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.