BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

599 related articles for article (PubMed ID: 9605329)

  • 41. Solution structure of Escherichia coli glutaredoxin-2 shows similarity to mammalian glutathione-S-transferases.
    Xia B; Vlamis-Gardikas A; Holmgren A; Wright PE; Dyson HJ
    J Mol Biol; 2001 Jul; 310(4):907-18. PubMed ID: 11453697
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mutation of conserved residues in Escherichia coli thioredoxin: effects on stability and function.
    Gleason FK
    Protein Sci; 1992 May; 1(5):609-16. PubMed ID: 1304360
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reaction mechanism and regulation of mammalian thioredoxin/glutathione reductase.
    Sun QA; Su D; Novoselov SV; Carlson BA; Hatfield DL; Gladyshev VN
    Biochemistry; 2005 Nov; 44(44):14528-37. PubMed ID: 16262253
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Redox properties and evolution of human glutaredoxins.
    Sagemark J; Elgán TH; Bürglin TR; Johansson C; Holmgren A; Berndt KD
    Proteins; 2007 Sep; 68(4):879-92. PubMed ID: 17546662
    [TBL] [Abstract][Full Text] [Related]  

  • 45. On the role of the cis-proline residue in the active site of DsbA.
    Charbonnier JB; Belin P; Moutiez M; Stura EA; Quéméneur E
    Protein Sci; 1999 Jan; 8(1):96-105. PubMed ID: 10210188
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Thiol-disulfide exchange between glutaredoxin and glutathione.
    Iversen R; Andersen PA; Jensen KS; Winther JR; Sigurskjold BW
    Biochemistry; 2010 Feb; 49(4):810-20. PubMed ID: 19968277
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural and redox properties of the leaderless DsbE (CcmG) protein: both active-site cysteines of the reduced form are involved in its function in the Escherichia coli periplasm.
    Li Q; Hu HY; Wang WQ; Xu GJ
    Biol Chem; 2001 Dec; 382(12):1679-86. PubMed ID: 11843181
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ionization equilibria for side-chain carboxyl groups in oxidized and reduced human thioredoxin and in the complex with its target peptide from the transcription factor NF kappa B.
    Qin J; Clore GM; Gronenborn AM
    Biochemistry; 1996 Jan; 35(1):7-13. PubMed ID: 8555200
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A unique thioredoxin of the parasitic nematode Haemonchus contortus with glutaredoxin activity.
    Sotirchos IM; Hudson AL; Ellis J; Davey MW
    Free Radic Biol Med; 2009 Mar; 46(5):579-85. PubMed ID: 19111609
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of pH on the oxidation-reduction properties of thioredoxins.
    Setterdahl AT; Chivers PT; Hirasawa M; Lemaire SD; Keryer E; Miginiac-Maslow M; Kim SK; Mason J; Jacquot JP; Longbine CC; de Lamotte-Guery F; Knaff DB
    Biochemistry; 2003 Dec; 42(50):14877-84. PubMed ID: 14674763
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Elimination of all charged residues in the vicinity of the active-site helix of the disulfide oxidoreductase DsbA. Influence of electrostatic interactions on stability and redox properties.
    Jacobi A; Huber-Wunderlich M; Hennecke J; Glockshuber R
    J Biol Chem; 1997 Aug; 272(35):21692-9. PubMed ID: 9268296
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural analysis of three His32 mutants of DsbA: support for an electrostatic role of His32 in DsbA stability.
    Guddat LW; Bardwell JC; Glockshuber R; Huber-Wunderlich M; Zander T; Martin JL
    Protein Sci; 1997 Sep; 6(9):1893-900. PubMed ID: 9300489
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thioredoxin fusions increase folding of single chain Fv antibodies in the cytoplasm of Escherichia coli: evidence that chaperone activity is the prime effect of thioredoxin.
    Jurado P; de Lorenzo V; Fernández LA
    J Mol Biol; 2006 Mar; 357(1):49-61. PubMed ID: 16427080
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system.
    Fernandes AP; Holmgren A
    Antioxid Redox Signal; 2004 Feb; 6(1):63-74. PubMed ID: 14713336
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vivo requirement for glutaredoxins and thioredoxins in the reduction of the ribonucleotide reductases of Escherichia coli.
    Gon S; Faulkner MJ; Beckwith J
    Antioxid Redox Signal; 2006; 8(5-6):735-42. PubMed ID: 16771665
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Protein-protein interaction as a powering source of oxidoreductive reactivity.
    Lin TY
    Mol Biosyst; 2010 Aug; 6(8):1454-62. PubMed ID: 20473443
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Protein-protein interactions at an enzyme-substrate interface: characterization of transient reaction intermediates throughout a full catalytic cycle of Escherichia coli thioredoxin reductase.
    Negri A; Rodríguez-Larrea D; Marco E; Jiménez-Ruiz A; Sánchez-Ruiz JM; Gago F
    Proteins; 2010 Jan; 78(1):36-51. PubMed ID: 19585660
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Insights into deglutathionylation reactions. Different intermediates in the glutaredoxin and protein disulfide isomerase catalyzed reactions are defined by the gamma-linkage present in glutathione.
    Peltoniemi MJ; Karala AR; Jurvansuu JK; Kinnula VL; Ruddock LW
    J Biol Chem; 2006 Nov; 281(44):33107-14. PubMed ID: 16956877
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thioredoxin 1 promotes intracellular replication and virulence of Salmonella enterica serovar Typhimurium.
    Bjur E; Eriksson-Ygberg S; Aslund F; Rhen M
    Infect Immun; 2006 Sep; 74(9):5140-51. PubMed ID: 16926406
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A bacterial thioredoxin-like protein that is exposed to the periplasm has redox properties comparable with those of cytoplasmic thioredoxins.
    Loferer H; Wunderlich M; Hennecke H; Glockshuber R
    J Biol Chem; 1995 Nov; 270(44):26178-83. PubMed ID: 7592822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.